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Abstract

This work explores learning agent-agnostic synthetic environ-
ments (SEs) for Reinforcement Learning. SEs act as a proxy
for target environments and allow agents to be trained more
efficiently than when directly trained on the target environ-
ment. We formulate this as a bi-level optimization problem
and represent an SE as a neural network. By using Natural
Evolution Strategies and a population of SE parameter vec-
tors, we train agents in the inner loop on evolving SEs while
in the outer loop we use the performance on the target task
as a score for meta-updating the SE population. We show
empirically that our method is capable of learning SEs for
two discrete-action-space tasks (CartPole-v0 and Acrobot-
v1) that allow us to train agents more robustly and with up
to 60% fewer steps. Not only do we show in experiments
with 4000 evaluations that the SEs are robust against hyper-
parameter changes such as the learning rate, batch sizes and
network sizes, we also show that SEs trained with DDQN
agents transfer in limited ways to a discrete-action-space ver-
sion of TD3 and very well to Dueling DDQN.

Introduction
In this paper we consider the intriguing idea of learning a
proxy data generating process for Reinforcement Learning
(RL) that allows one to train learners more effectively and
efficiently on a task, that is, to achieve similar or higher per-
formance more quickly compared to when trained directly
on the original data generating process. The relevant lit-
erature is multifaceted with works in core-sets (Sener and
Savarese 2018), World Models (Ha and Schmidhuber 2018),
POET (Wang et al. 2019), Generative Teaching Networks
(Such et al. 2020), Generative Playing Networks (Bontrager
and Togelius 2020), and Reward Shaping (Zheng, Oh, and
Singh 2018) which all constitute contributions addressing
this idea. Learning proxy models is a very promising direc-
tion, because their higher training and evaluation efficiency
allows for new applications in fields such as AutoML (Hut-
ter, Kotthoff, and Vanschoren 2019). Moreover, they can
serve as a tool for algorithm and dataset design since the
proxy can yield insights into the importance of passing states
carrying large signal or by identifying information and un-
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derrepresented dataset classes required for efficient learning
(Such et al. 2020).

In this work, we focus on learning a data generating
process for RL. More precisely, we investigate the ques-
tion of whether we can learn a Markov Decision Process
(MDP), which we refer to as a synthetic environment (SE),
that is capable of producing synthetic data to allow for ef-
fective and efficient teaching of a target task to an agent
(learner) through an informed representation of the target
environment. We report results on the (continuous-state and
discrete-action-space) CartPole-v0 and Acrobot-v1 target
tasks from OpenAI Gym (Brockman et al. 2016) which
show that our SEs can train different types of agents to per-
form well on the target tasks, and also that these agents can
be trained more efficiently.

We approach this environment generation problem by
posing it as a bi-level optimization problem. The inner loop
trains the agent on an SE and, since we employ an agent-
agnostic method, we can interchangeably adopt standard RL
algorithms at will, for example, ones based on policy gradi-
ent (Sutton et al. 2020) or Q-learning (Watkins 1989). In the
outer loop, we assess the agent’s performance by evaluat-
ing it on the real environment (target task). The collected
reward is used as a score to update the SE parameters used
in the inner loop. Here, we use a population of SE parame-
ters and update them with Evolution Strategies (Rechenberg
1973). We employ the same learning strategy as in (Sali-
mans et al. 2017) which belongs to the family of Natural
Evolution Strategies (Wierstra et al. 2008) but instead of op-
timizing over the agent policy parameter space we optimize
over the SE parameter space.

We drew inspiration from the questions and learning
scheme posed in Generative Teaching Networks (Such
et al. 2020). While we similarly use a bi-level optimization
scheme to learn a data generator, our approach is different
in central aspects. Particularly, we do not use noise vectors
as input to our SEs and view the posed question directly
from the perspective of RL instead of Supervised Learning.
Also, we use ES to avoid the need for explicitly computing
second-order meta-gradients. While ES has its drawbacks,
this is beneficial since explicitly computing second-order
meta-gradients can be expensive and unstable (Metz et al.
2019), particularly in the RL setting where the length of the
inner loop can be variant and high. ES can further easily be



parallelized and enables our method to be agent-agnostic.
Our contributions are as follows: We
• show that learning of synthetic environments as a bi-level

optimization problem with NES constitutes a feasible
method that is capable of learning SEs for two discrete-
action-space Gym tasks, CartPole-v0 and Acrobot-v1.

• show that SEs trained with DDQN agents are able to
transfer to other agents, that is, very well to Dueling
DDQN and in limited ways to TD3 (which we adapted
to deal with discrete action spaces).

• provide empirical evidence that SEs, once generated, are
efficient and robust in training agents, requiring up to 60%
fewer training steps while varying hyperparameters such
as the learning rate, batch size and neural network size.
Our code and trained SEs are made available publicly1.

• shed some light on what the agents learn from the syn-
thetic environments in a small qualitative study.

Method
Problem Statement
We consider a Markov Decision Process represented by a 4-
tuple (S,A,P,R) with S as the set of states, A as the set
of actions, P : S × A → S as the transition probabilities
between states if a specific action is executed in that state
and R as the immediate rewards. The MDPs we will con-
sider in this work are either human-designed environments
Ereal (such as Gym environments) or learned synthetic envi-
ronments Esyn,ψ, referred to as SE, represented by a neural
network with the parameters ψ. Interfacing with the envi-
ronments is in both cases almost identical: given an input
a ∈ A, the environment outputs a next state s′ ∈ S and a
reward ra(s, s′) ∈ R. In the case of Esyn,ψ, we additionally
input the current state s ∈ S since we model it to be state-
less. The central objective of an RL agent when interacting
on an MDP Ereal is to find an optimal policy πθ parameter-
ized by θ that maximizes the expected reward F (θ; Ereal). In
RL, there exist many different methods to optimize this ob-
jective, for example policy gradient (Sutton et al. 2020) or
Q-Learning (Watkins 1989). We now consider the following
bi-level optimization problem: find the parameters ψ∗, such
that the policy πθ found by an agent parameterized by θ that
trains on Esyn,ψ∗ will achieve the highest reward on a target
environment Ereal. Formally that is:

ψ∗ = arg max
ψ

F (θ∗(ψ); Ereal)

s.t. θ∗(ψ) = arg max
θ

F (θ; Esyn,ψ).
(1)

We can use standard RL algorithms for optimizing the
agents on the SE in the inner loop. Although gradient-based
optimization methods can be applied in the outer loop, we
chose Natural Evolution Strategies (NES) over such meth-
ods to allow the optimization to be independent of the
choice of the agent in the inner loop and to avoid comput-
ing potentially expensive, unstable, and agent-specific meta-
gradients. Additional advantages of ES are that it is better

1https://github.com/automl/learning environments

suited for long episodes (which often occur in RL), sparse
or delayed rewards (Salimans et al. 2017), and paralleliza-
tion.

Algorithm
Based on the formulated problem statement, let us now ex-
plain our method. The overall NES scheme is adopted from
Salimans et al. (2017) and depicted in Algorithm 1. We
instantiate the search distribution similarly as an isotropic
multivariate Gaussian with mean 0 and a covariance σ2I
yielding the score function estimator 1

σEε∼N(0,I){F (ψ +
σε)ε}. The main difference to Salimans et al. (2017) is that,
while they maintain a population over perturbed agent pa-
rameter vectors, our population consists of perturbed SE
parameter vectors. In contrast to their approach, our NES
approach also involves two optimizations, namely that of
the agent and the SE parameters instead of only the agent
parameters. Our algorithm first stochastically perturbs each
population member according to the search distribution re-
sulting in ψi. Then, a new randomly initialized agent is
trained in TrainAgent on the SE parameterized by ψi for
ne episodes. The trained agent with fixed parameters is then
evaluated on the real environment in EvaluateAgent, yield-
ing the average cumulative reward across 10 test episodes
which we use as a score Fψ,i in the above score function es-
timator. Finally, we update ψ in UpdateSE with a stochastic
gradient estimate based on all member scores via a weighted
sum ψ ← ψ + α 1

npσ

∑np

i Fiεi. We repeat this process no
times but perform manual early-stopping when a resulting
SE is capable of training agents that consistently solve the
target task. Finally, we use a parallel version of the algo-
rithm, using one worker for each member of the population
at the same time.

Algorithm 1: NES for Learning SEs

Input: initial synthetic environment parameters ψ,
real environment Ereal, εi ∼ N (0, σ2I), number of
episodes ne, population size np ;

repeat
for each member of the pop. i = 1, 2, . . . , np do

ψi = ψ + εi ;
for n = 1, 2, . . . , ne do

θi,n = TrainAgent(θi,n−1, Esyn,ψi
) ;

end
Fψ,i = EvaluateAgent(θi,ne , Ereal) ;

end
ψ← UpdateSE(ψ,

{
εi
}
i
,
{
Fψ,i

}
i
) ;

until no steps;

Heuristics for Agent Training and Evaluation
Determining the number of required training episodes ne
on an SE is challenging as the rewards of the SE may not
provide information about the current agent’s performance
on the real environment. Thus, we use a heuristic to early-
stop training once the agent’s training performance on the
SE converged. Let us refer to the cumulative reward of the
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k-th training episode as Ck. The two values C̄d and C̄2d

maintain a non-overlapping moving average of the cumula-
tive rewards over the last d and 2d respective episodes up to
episode k. Now, if |C̄d−C̄2d|

|C̄2d|
≤ Cdiff the training is stopped.

In all experiments we choose d = 10 and Cdiff = 0.01.
Training agents on real environments is stopped when the
average cumulative reward across the last d test episodes ex-
ceeds the solved reward threshold. In case no heuristic is
triggered, we train for 1000 episodes at most on both env.
types. Independent of which of the environments (Ereal or
Esyn) we train an agent on, the process to assess the actual
agent performance is equivalent: we do this by running the
agent on 10 test episodes from Ereal for a fixed number of
task-specific steps (i.e. 200 on CartPole and 500 on Acrobot)
and use the cumulative rewards for each episode as a perfor-
mance proxy and evaluation data points for visualization.

Agents, Hyperparameters, and Sampling
While our agent-agnostic method in principle allows to train
arbitrary RL agents, in this work we always use DDQN (van
Hasselt, Guez, and Silver 2016) for the training of our agents
in Algorithm 1. Instead, we study the robustness of SEs to
varying agent hyperparameters and the transferability of the
SEs to train other agents. For studying transferability, we
use Dueling DDQN (Wang et al. 2016) and TD3 (Fujimoto,
Hoof, and Meger 2018). The latter is chosen because it does
not solely rely on (deep) Q-Learning as it constitutes an al-
gorithm of the actor-critic and policy gradient family. How-
ever, since TD3 is naturally designed to deal with continu-
ous action spaces but both our tasks employ a discrete action
space, we equip the actor with a Gumble-Softmax distribu-
tion (Jang, Gu, and Poole 2017) with a learned temperature
that enables us to operate on discrete actions while main-
taining differentiability. Due to known sensitivity to hyper-
parameters (HPs), we apply a hyperparameter optimization
for the execution of Algorithm 1. In addition to the inner and
outer loop of our algorithm, we use another outer loop to op-
timize some of the agent and NES HPs with BOHB (Falkner,
Klein, and Hutter 2018) to identify stable HPs. The op-
timized HPs are reported in Table 2 in the appendix. We
did not optimize some of the HPs that would negatively af-
fect runtime (e.g. population size, number of train and test
episode, see Table 3 in the appendix). Resulting from this
optimization, we use mirrored sampling (Brockhoff et al.
2011) similar to Salimans et al. (2017) and a score trans-
formation applied to F that considers only members above
the average of the population scores and which normalizes
these to the range [0, 1]. In many of our experiments we draw
a comparison between varying HPs (denoted as “HP: vary-
ing”) and keeping HPs fixed (denoted as “HP: fixed”). For
the latter we use the default HPs specified in Table 4 in the
appendix. In the case of varying HPs, we focus on a subset
of the default HPs given in Table 1 and randomly sample
from the specified ranges.

Experiments
After identifying stable DDQN and NES hyperparameters
(HPs), we ran Algorithm 1 in parallel with 16 workers for

agent hyperparameter value range log scale
learning rate 10−3/3 - 10−3 ∗ 3 True

batch size 42 - 384 True
hidden size 42 - 384 True
hidden layer 1 - 3 False

Table 1: Ranges used for sampling random agent HP config.
for variation during NES runs and when training on SEs.

200 NES outer loop iterations. Each worker had one AMD
EPYC 7502 CPU core at its disposal, resulting in an overall
runtime of 6-7h on Acrobot and 5-6h on CartPole for 200
NES outer loop iterations. For reference, we note that Sali-
mans et al. (2017) used 80 workers each having access to 18
cores for solving the Humanoid task.

Let us now consider Figure 1. It becomes evident that the
proposed method with the given resources allows to iden-
tify SEs that are able to teach agents to solve CartPole and
Acrobot tasks respectively. Each thin line in the plot corre-
sponds to the average of 16 worker evaluation scores given
by EvaluateAgent in Algorithm 1 as a function of the NES
outer loop iteration. We repeat this for 40 separate NES opti-
mization runs and visualize the average across the thin lines
as a thick line for each task. We note that we only show a
random subset of the 40 thin lines for better visualization
and randomly sample the seeds at all times in this work. We
believe that the stochasticity introduced by this may lead to
the variance visible in the plot when searching for good SEs.
Both the stochasticity of natural gradients and the sensitiv-
ity of RL agents to seeds and parameter initializations may
additionally contribute to this effect. Notice, it is often suf-
ficient to run approximately 50 NES outer loops in order to
find SEs that solve a task, as can be seen in Figure 1. Besides
early-stopping, other regularization techniques (e.g. regular-
izing the SE parameters) can be applied to address overfit-
ting which we likely observe in the advanced training of the
Acrobot task.

Evaluation Performance of SE-trained Agents
To answer whether the proposed method can learn SEs that
are capable training agents effectively and efficiently, we
conducted the following experiment.

First, we generated two sets each consisting of 40 SEs
from individual NES runs all capable of solving the CartPole
task (i.e. a cumulative reward of ≥ 195). For one of the sets
we generated 40 SEs where we varied the HPs by sampling
configurations of a subset of the DDQN HPs according to
Table 1 before running the inner loop. For the other set of
40 SEs we did not vary the HPs and used our default DDQN
HPs (see Table 4 in the appendix).

Second, on each SE of both of the sets we trained 10
DDQN agents with again varying HPs (again in the ranges
specified in Table 1). Then, after training, we evaluated each
agent on the target task across 10 test episodes, resulting in
overall 4000 evaluations per set.

Lastly, we used the cumulative rewards from the test
episodes for generating the violin plots seen in Figure 2. The
center violin corresponds to the set for which we trained
the SEs with varying agent HPs and the right violin cor-



Figure 1: Results from 40 different NES runs with 16 work-
ers each (using random seeds) show that our method is able
to identify SEs that allow agents to solve the target tasks.
Each thin line corresponds to the average of 16 worker eval-
uation scores returned by EvaluateAgent in our algorithm as
a function of the NES outer loop iterations.

responds to the other respective set for which we did not
vary the HPs. The left violin represents our baseline which
shows 4000 evaluations on CartPole without an involvement
of SEs. Note, in all three cases we always vary the agent HPs
at test time, and the “HP: fixed” / “HP: varying” in the Figure
merely indicates whether we varied the agent HPs during SE
training. We also report the average reward across the 4000
evaluations (top) and the number of average episodes and
training steps required until the heuristics for stopping train-
ing (see Method Section) are triggered (bottom). We can see
that the DDQN-trained SEs are consistently able to train
DDQN agents using ∼60% fewer steps on average while
being more stably (center violin, smaller std. dev.) than the
the baseline (left violin), and the SEs also show little sensi-
tivity to HP variations. Training on SEs without varying the
agent HPs during the NES optimization degrades the perfor-
mances noticeably, potentially due to overfitting of the SEs
to the specific agent HPs.

Transferability of Synthetic Environments
Obviously, it is difficult to justify the argument of speed
improvement when a lot of environment observations have
gone into training an SE. This is why in this experiment, we
investigate whether DDQN-trained SEs are capable of effi-
ciently training other agents as well. To do this, we reuse
the two sets from the previous experiment that consist of 40
DDQN-trained SEs, but this time we train Dueling DDQN
agents on the SEs, again with varying HPs according to Ta-
ble 1. From Figure 3 we conclude that the transfer to the
Dueling DDQN agent succeeds and it facilitates a ∼50%
faster and noticeably more stable training on average. Again,
presumably due to overfitting, not varying the DDQN agent
HPs during our NES runs negatively affects the Dueling
DDQN performance (right violin).

We conducted another experiment to analyze the trans-
fer to a second agent which is not solely based on (deep)
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Figure 2: We show the distributions of the average cumula-
tive rewards collected by DDQN agents on the CartPole task
based on 4000 evaluations per violin and DDQN-trained
SEs. We depict three different agent training settings: (left)
agents trained on real environments with varying agent HPs,
(center) on DDQN-trained SEs when varying agent HPs dur-
ing NES runs, (right) on DDQN-trained SEs where the agent
HPs were fixed during training of the SEs. The DDQN-
trained SEs consistently train DDQN agents up to ∼60%
faster and more stably (mean train steps and std. dev. of
center violin) compared to the baseline (left violin), and the
agents show little sensitivity to HP variations.
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Figure 3: Visualization of transferring from DDQN to Du-
eling DDQN agents on CartPole based on 4000 evaluations
per violin.

Q-learning. As described above, we chose the actor-critic-
based TD3 agent that we adapted to handle discrete ac-
tion spaces while maintaining differentiability. We can see
in Figure 4 that, while the baseline performance (left vio-
lin) indicates that our implementation seems to be correct,
the performance decreases in the center violin, showing a
limited transferability compared to the very good transfer
to Dueling DDQN. We believe this may be due to the dif-
ferent learning behavior of actor-critic methods compared
to learning with DDQN. We believe this result may indi-
cate that TrainAgent requires even more variation, i.e. in-
stead of varying the HPs and seeds, we may additionally
vary the agent types within an NES run. Another way to ad-
dress this might be to increase the number of evaluations of
the same perturbation and adding additional workers. Nev-
ertheless, we also observe that in some cases the SEs are ca-
pable of training discrete TD3 agents successfully and from
the low std. dev. (14.29 vs. 198.40) of the average number
of episodes we can infer that, when the training succeeds,
it remains efficient. All in all, this begs a deeper analysis



train: real  / HP: varying
(mean num episodes: 183.91±198.40)
(mean train steps: 8213.35±5776.05)

train: synth. / HP: varying
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Figure 4: Visualization of transferring from DDQN to
discrete-action-space TD3 on the CartPole task.
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Figure 5: Visualization of transferring from DDQN to Duel-
ing DDQN on the Acrobot task.

of the transfer in the future, for example by identifying and
analysing well and ill-suited SEs, as we were able to observe
that well-suited SEs tended to be consistent in their aptitude
of training agents. As can be seen in Figure 5, transferring
from DDQN to Dueling DDQN is also possible on the Ac-
robot task (a cumulative reward of -100 solves the task). In
this case, the policies learned on the SE (center violin) are
in fact substantially better on average than those learned on
the real environment (left violin). Also, the SEs facilitate a
∼38% faster training on average compared to the baseline.
We note that the default DDQN HPs found for the CartPole
task were reused for this task (as well as the HPs and ranges
for variation from Table 1).

Analysing Synthetic Environment Behavior
Is it possible to shed some light on the efficacy of the learned
SEs? Notice that we are operating on tasks with small state
spaces which allow a qualitative visual study. This motivates
the following experiment in which we visualized an approx-
imation of the state and reward distributions generated by
agents trained on SEs and real environments.

First, we randomly chose one trained SE for each task
(CartPole and Acrobot). Then, on each SE we trained 10
DDQN agents with default HPs and random seeds until the
stopping heuristic specified in the Method Section was trig-
gered (similar to the other experiments). During their train-
ing, we logged all (s, a, r, s′) tuples. Second, we evaluated
the SE-trained DDQN agents on the respective real envi-
ronments for 10 test episodes each and again logged the
(s, a, r, s′) tuples. Lastly, we visualized the histograms of

the collected next states and rewards for each task and color-
coded them according to their origin (SE or real environ-
ment).

The result is depicted in Figure 6 for CartPole (top) and
Acrobot (bottom). We show all four CartPole state dimen-
sions, but only four of the six Acrobot state dimensions (only
the sin and cos joint angles) for reasons of brevity. All plots
show a strong distributional shift between the SE and the
real environment, indicating that the agent is tested on states
and provided with rewards it has barely seen during train-
ing, yet it is able to solve the environment (average cumu-
lative rewards: 199.28 on CartPole and -90.2 on Acrobot).
Furthermore, it can be observed that some of the synthetic
state distributions are narrower than the real counterparts.
We point out that the synthetic reward distribution is wider
than the real one, indicating that the sparse reward distri-
bution becomes dense as we get a reward for each action
taken. We hypothesize that the SEs produce an informed
representation of the target environment by narrowing the
state distributions to bias agents towards helpful (i.e. car-
rying strong signal) and relevant states. The histograms de-
picted in green were generated to see whether the distribu-
tion shifts are caused by the agent or the SE. They show the
SE responses when fed with real environment data based on
the logged state-action pairs that the agents have seen during
testing. For most of the state dimensions, we observe that
the green distributions align better with the blue than with
the orange ones. Regardless of the origin (SE or real) of the
current state and action, the next state and reward of the SE
seem again to converge to values seen during training. Thus,
we conclude it is more likely the shift is generated by the SE
than the agent. While many questions remain unanswered
in these preliminary results, they may offer partial explana-
tions for the efficacy of SEs to the reader, for example, by
understanding them as “guiding systems” for agents.

Limitations
Aside from advantages there also exist limitations to our
approach. As can be seen in Salimans et al. (2017), NES
methods strongly depend on the number of workers and re-
quire a lot of parallel computational resources. We observed
this limitation in preliminary experiments when we applied
our method to more complex environments, such as the
HalfCheetah or Humanoid task. Unsurprisingly, 16 workers
were insufficient to learn SEs able to solve them. Moreover,
we assume observable, Markovian states and partial observ-
ability may add further complexity to the optimization.

Conclusion
We proposed a method that allows to learn synthetic envi-
ronments which act as proxies for RL target task environ-
ments. By analyzing this method for the two discrete-action-
space target tasks CartPole and Acrobot, we provided em-
pirical evidence of their efficacy in experiments with 4000
evaluations and under varying hyperparameters and agents.
Our results show that it is possible to significantly reduce
the number of training steps while still achieving the same
target task performance. Moreover, the results illustrate that



Figure 6: Histograms of approximate next state s′ and reward r distributions produced by 10 DDQN agents when trained on
an SE (blue) and when afterwards tested for 10 episodes on a real environment (orange) for each task (top: CartPole, bottom:
Acrobot). In green we depict the SE responses when the SE is fed with state-action pairs that the agent used during testing on
the real environment. For CartPole, we show all state dimensions and for Acrobot we only show the joint angles.

the learned SEs are capable of transferring well (Dueling
DDQN) or in limited ways (TD3) to new agents not seen
during training. While SEs still have to be better understood,
we see them as a useful tool in various applications. For
example, as agent-agnostic, cheap-to-run environments for
AutoML, as a tool for agent and task analysis or as mod-
els for efficient agent pre-training. We believe our promis-
ing results motivate future research in which we want to in-
vestigate how the method performs on more complex envi-
ronments and better understand the trade-off between their
complexity and the required computational resources.
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Appendix: Agent and NES Hyperparameters
The following tables provide an overview of the hyperparameters used in our experiments.

hyperparameter symbol CartPole-v0 Acrobot-v1 value range log. scale
NES step size α 0.148 0.727 0.1− 1 True
NES std. dev. σ 0.0124 0.0114 0.01− 1 True
NES mirrored sampling - True True False/True -
NES score transformation - better avg. better avg. (rank transform, linear transform, etc.) -
NES SE number of hidden layers - 1 1 1− 2 False
NES SE hidden layer size - 83 167 48− 192 True
NES SE activation function - LReLU PReLU Tanh/ReLU/LReLU/PRelu -
DDQN initial episodes - 1 20 1− 20 True
DDQN batch size - 199 149 64− 256 False
DDQN learning rate - 0.000304 0.00222 0.0001− 0.005 True
DDQN target network update rate - 0.00848 0.0209 0.005− 0.05 True
DDQN discount factor - 0.988 0.991 0.9− 0.999 True (inv.)
DDQN initial epsilon - 0.809 0.904 0.8− 1 True
DDQN minimal epsilon - 0.0371 0.0471 0.005− 0.05 True
DDQN epsilon decay factor - 0.961 0.899 0.8− 0.99 True (inv.)
DDQN number of hidden layers - 1 1 1− 2 False
DDQN hidden layer size - 57 112 48− 192 True
DDQN activation function - Tanh LReLU Tanh/ReLU/LReLU/PRelu -

Table 2: Optimized hyperparameters for experiment depicted in Figure 1

hyperparameter symbol CartPole-v0 Acrobot-v1
NES number of outer loops no 200 200
NES max. number of train episodes ne 1000 1000
NES number of test episodes nte 10 10
NES population size np 16 16
DDQN replay buffer size - 100000 100000
DDQN early out number d 10 10
DDQN early out difference Cdiff 0.01 0.01
env. max. episode length - 200 500
env. solved reward - 195 −100

Table 3: Fixed hyperparameters for experiment depicted in Figure 1

DDQN, Dueling DDQN & TD3 hyperparameter value
initial episodes 10
batch size 128
learning rate (DDQN & D.DDQN / TD3) 0.001 / 0.0005
target network update rate 0.01
discount factor 0.99
epsilon decay factor 0.9
hidden layer number 2
hidden layer size 128
activation function (DDQN & D. DDQN / TD3) ReLU / Tanh
replay buffer size 100000
max. train episodes 1000
Gumbel Softmax start temperature (TD3) 1
Hard distributions / one-hot-encoded actions (TD3) True

Table 4: Default hyperparameters for our experiments used in Figures 2, 3, 4, 5, and 6. early out num and early out difference
are equivalent to Table 3.
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