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Abstract

At the heart of the standard deep learning training loop is
a greedy gradient step minimizing a given loss. We propose
to add a second step to maximize training generalization. To
do this, we optimize the loss of the next training step. While
computing the gradient for this generally is very expensive
and many interesting applications consider non-differentiable
parameters (e.g. due to hard samples), we present a cheap-to-
compute and memory-saving reward, the gradient-alignment
reward (GAR), that can guide the optimization. We use this
reward to optimize multiple distributions during model train-
ing. First, we present the application of GAR to choosing
the data distribution as a mixture of multiple dataset splits
in a small scale setting. Second, we show that it can suc-
cessfully guide learning augmentation strategies competitive
with state-of-the-art augmentation strategies on CIFAR-10
and CIFAR-100.

1 Introduction
The human capacity to learn is staggering. Not only can hu-
mans learn about the world they live in, but crucially humans
can also learn a a good learning strategy simultaneously. To
this end, humans are able to learn to select their learning
path.

Take a math course as an example. In the beginning you
might have followed your professor's textbook closely. With
increasing understanding, you might have realized there are
other textbooks out there, which yield better learning out-
comes. In the same course you might also have learned that
it can be helpful to try to prove the presented theorems your-
self, instead of only reading the proof provided in the text-
book. You might have learned both of these learning strate-
gies while learning the material of the course at the same
time. So, your understanding of the material and the way you
studied both improved as you studied. Similarly, a promis-
ing route towards stronger machine learning models could
lie in training not only for performing a particular task, but
for better learning strategies on that task at the same time.

We define an improved learning method as a method that
yields outcomes that generalize well to unseen problem in-
stances. In a supervised learning setting that means valida-
tion error is minimized. One way to achieve this is by op-
timizing meta-parameters with a meta-gradient. The meta-
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gradient is a gradient taken through an SGD training run,
which is possible since SGD itself is differentiable.

We define the meta-loss for the current step in a training
loop as the loss in the next step, after performing an SGD
step. Thus, the meta-loss, unlike the loss, decreases if a step
on some data leads to improved performance on different
data. This meta-loss can be particularly useful for parts of
the training algorithm that do not make sense to be directly
optimized with the usual loss. A particular example for this
is the data distribution. While it was shown that it can be
helpful to change the data distribution (over time) for SGD
training, by training with a curriculum (see e.g. Bengio, Le-
Cun et al. 2007) or by filtering the dataset (see e.g. Chen
et al. 2019), we can generally not decide what data to train
on using the same loss we use for model training: this would
simply encourage the model to focus on a particularly easy
data distribution, since that would minimize the loss. The
meta-loss on the other hand rewards generalization. The ex-
ample of learning a distribution over a dataset is also partic-
ularly interesting because it is not differentiable in general.
Thus, we would not be able to compute meta-gradients, even
if compute cost was no issue.

We evaluate our method for two settings: learning a dis-
tribution over data splits in a toy experiment and augmenta-
tion selection in a real-world application to CIFAR-10 and
CIFAR-100 (Krizhevsky, Hinton et al. 2009).

The over-arching contribution of this paper is to intro-
duce a way of adapting meta parameters φ online during
SGD training of the elementary network parameters θ that
is efficient in terms of data, memory and time. We present
a method to train online for generalization and do so for
non-differentiable distributions. Specifically, our contribu-
tions are:

• We present a mechanism to cheaply approximate meta-
gradients in SGD, using the next batch as a proxy for the
validation set.

• We introduce the Gradient-Alignment Reward setup with
an efficient implementation, which allows us to use rein-
forcement learning with an unique per-example reward.

• We show promising empirical results for our approach on
a simple example and a real-world application.



Algorithm 1 In-Loop Meta-Learning
1: initialize parameters θ1, φ1, φ2 := φ1
2: for t ∈ {1, . . . , T} do
3: lt ← `(θt, φt)
4: θt+1 ← θt − α∇θt lt
5: if t > 1 then
6: φt+1 ← sg(φt − β∇φt−1

lt)
7: end if
8: end for

2 Related Work
A commonly-used approach in the literature (e.g., Luketina
et al. (2016) or Liu, Simonyan, and Yang (2019)) is to use al-
ternating SGD, which alternates SGD steps for θ w.r.t. train-
ing loss and for φ w.r.t. validation loss. We follow a similar
approach with two key differences: (i) we do not use a held-
out dataset to train φ and (ii) we train weights φ parameter-
izing a distribution non-differentiable p.

Most closely related to our proposed method is the work
by Wang et al. (2020) on data weighting. In this work they
propose a similar reward to ours here, with two key differ-
ences: (i) they only consider aligning with the gradients of
validation examples and (ii) they only use an approximation
to the example-wise alignment. Counter, instead of using an
approximation, we present a very efficient method of com-
puting the example-wise alignments exactly (see Section 5).
Further, we discuss properties of the reward in detail (see
Section 4), which prior has been omitted.

Other related work stems from the realm of online cur-
riculum learning (see e.g. Graves et al. 2017). Similarly to
our toy example, this line of work decides on what data to
train as the training goes. The main difference is that we
directly optimize the data distribution using the aforemen-
tioned approximation of the meta-gradient.

3 In-Loop Meta-Training
In contrast to previous work, in order to be more data-
efficient and not require a validation set, we propose to ex-
ploit the fact that we are using SGD, and that we can use the
next batch as a cheap proxy for the validation set.

Algorithm 1 outlines the general approach. The standard
SGD loop is shown in black. In each step the parameters θ
are optimized to greedily minimize a stochastic loss `(θ). In
red we extend this standard framework with meta-learning
updates. The loss now depends additionally on the meta pa-
rameters φ. We optimize φ not to minimize the loss directly,
but to minimize the loss of the next step through the up-
date performed in this step, as is done in standard unrolled
gradient loop setups. In this setup we can have a direct de-
pendence of the next-step loss on the meta parameters φ not
through the update, since the module that φ parameterizes
might be applied in that step, too (this is, e.g., the case if
φ parameterizes the data augmentation strategy, a case we
tackle in our experiments). Since we propose to re-use the
training steps as validation steps, we have a new dependency
of φ compared to previous work, namely on the validation

loss directly. This results, for differentiable setups, in the fol-
lowing meta gradient:

∇φt−1
lt = ∇θt lt · ∇φt−1

θt +∇φt
lt · ∇φt−1

φt.

The first term here describes the meta-gradient we are inter-
ested in: how to change φt−1 such that the next update of θ
improves the loss in the following step t. The second term
on the other hand describes how to change φt−1 such that
its update φt makes step t as simple as possible; this does
not facilitate generalization. We therefore propose to either
just use a different loss in every second step, which does not
depend on φ (e.g., in our case of φ parameterizing the data
augmentation, just use a simple default augmentation in ev-
ery second step), or cancel the second term artificially. In
Algorithm 1 we show the second option: to cancel the term,
we detach φ from the graph after each update, as is indicated
in the algorithm by the stop gradient operation sg. The sg
function is defined as the identity, but with a zero gradient;
so sg(x) = x for all x, but ∂sg(x)∂x = 0.

While this setup is very general, it also is very expen-
sive to compute the meta-gradient ∇φt−1

lt. As validation
for this statement we performed a small experiment with a
WideResNet-28-10 on an NVIDIA Tesla P100. We average
step times over one epoch of CIFAR10 training. We looked
at two ways of computing the meta-gradients. (i) First, we
used the higher library (Grefenstette et al. 2019) for the
meta-gradient computations. (ii) Second, we re-used the gra-
dient∇θt`t to compute∇φt−1

`t using the chain rule through
an SGD update ∇φt−1

`t = −α∇θt`t · ∇φt−1
`t−1. The

optimized version improved the memory footprint slightly
over the higher implementation, yielding a 2.7×memory-
increase compared to a 3.1× memory-increase, but both
had a very comparable step time-increase of around 6.4×.
Both the time and the memory overhead are a problem for
large-scale machine learning training runs. A training run
that finishes over the weekend without meta-gradients might
take over half a month with this direct implementation of
online meta-learning. Additionally, potential memory prob-
lems might require changes to the training pipeline as it
would require nearly triple the memory. Most importantly,
back-propagation can only compute the derivative to fully
differentiable parts of the training process. In this work we
follow the setup of Algorithm 1, but propose a reward to ap-
proximate this gradient for any distribution.

θ1, φ1 ∇θt l1 θ2, φ2 ∇θt l2 θ3, φ3 ∇θt l3 θ4, φ4

〈(·)i , ·〉

〈(·)i , ·〉

Figure 1: A diagram outlining in-loop meta-learning with
the GAR. Extensions to the standard SGD loop are red.



4 Gradient-Alignment Reward
As discussed above there are cases where it is not possible
to compute the meta-gradient directly, because we optimize
some distribution p that depends on the meta-parameters φ
and produces hard samples ai ∼ p(·;φ) for each data point.
For example, ai could represent a network hyperparameter
or the data sampling strategy. In these cases, a simple ap-
proximation to the meta-gradient is to use the REINFORCE
trick (Williams 1992) with the negation of the next step's
loss as reward rt = −L(θt+1) using

∇φt
E

a∼p(·;φt)
[L(θt+1)] ≈ rt ·

n∑
i=1

∇φt
log p(ai;φt),

where L(θt) is the batch loss of the t-th step and
a ∼ p(·;φt). We refer to this approximation of the meta-
gradient as Next Step Loss Reward (NSLR). While this ap-
proximation is bias-free and simple, it incurs a lot of vari-
ance. Further, it provides a single reward only, even though
we sample from p for each data point. It would be far more
effective to use a reward for each sample instead of one re-
ward for the whole batch. To achieve efficient online meta-
learning, we propose the Gradient-Alignment Reward (GAR)
which allows us to use reinforcement learning with a unique
per-example reward.

GAR allows to do efficient in-loop meta-learning for
large models and large datasets. It is computed mostly from
artifacts of a standard SGD training and has little memory
overhead. We define the GAR as the dot product of a current
example-gradient with the next step's gradient. Formally,
the GAR rt,i for the i-th example in step t is

rt,i = 〈∇θ`(θt, φt)i,∇θL(θt+1)〉 , (1)

where `(·, ·)i is the loss of the i-th example in a batch, n is
the batch size and L(θt+1) =

1
n

∑n
j=1 `(θt+1, φt+1)j is the

batch loss of the (t+1)-th step. We maximize this reward by
sampling from a policy parameterized by φ for each exam-
ple and compute a gradient estimate with the REINFORCE
trick. Using vanilla policy-gradient the gradient toward φt is
estimated as

∇φt E
a∼p(·;φt)

[L(θt − α∇θt
1

n

n∑
i=1

`(θt, ai)i)] (2)

≈
n∑
i=1

rt,i · ∇φt
log p(ai;φt), (3)

where ai ∼ p(·;φt). In Figure 1 we visualize the computa-
tional flow of this update in comparison to the standard SGD
training-loop.

The following theorem should give some intuition for the
relationship of GAR with the unrolled gradient loop.

Theorem 1. The GAR update is an unbiased estimator of
the meta-gradient (i.e. ∇φ(t−1)

L(θt)) in the infinite batch
size limit.

Proof. Let our policy, trained with the meta-objective to
maximize the GAR, be a distribution p that depends on
φ. Further, assume that the model, and therefore the loss,
depends only on φ through samples from p. We can thus
denote the example loss `(θ, φ)i as `(θ, ai)i, where ai ∼
p(φ). We consider a standard SGD update θt+1 := θt −
α∇θ 1

n

∑n
i=1 `(θt, ai)i for some given model state θt and

meta actions ai ∼ p(φ). In the infinite batch size set-
ting we can sample infinitely many meta actions a per
batch. Thus, in the following we assume for the batch loss
l(a), which might depend on meta actions a, that l(a) =
Ea′∼p(φt)[l(a

′)], for ai ∼ p(φ). This is trivially fulfilled for
infinite batches of the form Ea′∼p(φt),`′ [`

′(θt, a
′)]. We de-

note the loss for the meta-gradients as L(θt+1). From this
we can infer that the distributional gradient of the update of
an algorithm trained with the GAR and the REINFORCE
trick point in the same direction:

∇φt
L(θt+1)

Using the definition of θt+1 and the infinite batch assump-
tion.

= ∇φtL(θt − α∇θt
1

n

n∑
i=1

E
ai∼p(·;φt)

[`(θt, ai)i])

Apply the chain rule.

= −α∇θt+1
L(θt+1) · ∇2

φt,θt

1

n

n∑
i=1

E
ai∼p(·;φt)

[`(θt, ai)i]

Now we re-arrange sums, expectations and gradients

= −α∇θt+1
L(θt+1) ·

1

n

n∑
i=1

∇φt
E

ai∼p(·;φt)
[∇θt`(θt, ai)i]

Make use of the REINFORCE trick.

= −α∇θt+1
L(θt+1)·

1

n

n∑
i=1

E
ai∼p(·;φt)

[∇θt`(θt, ai)i · ∇φt
log p(ai;φt)]

In the limit of the infinite batch assumption θt+1 does not
depend on a, since we take expectations over a and do not
only sample.

= −α E
a∼p(·;φt)

[
1

n

n∑
i=1

〈∇θt`(θt, ai)i,∇θt+1
L(θt+1, φt+1)〉·

∇φt log p(z;φt)

]
Finally we apply the definition of the GAR r.

= −α
n

E
a∼p(·;φt)

[
n∑
i=1

rt,i · ∇φt
log p(z;φt)

]
.



The above proof shows that comparing example gradients
from the current step with the aggregated gradient of the next
step is a bias-free estimator of the stochastic meta-gradient
in the infinite batch size limit.

The GAR will only consider the impact of φt on the up-
date generated with the last batch and will not consider the
impact of φt, like noted in Algorithm 1 by the stop gradient
sg.

Our method just requires computing the dot products of
gradients, besides computing the gradients inside p on top
of the terms which are anyways needed for an SGD loop.
Similar setups where proposed before, but in the following
section we also detail how to compute the GAR efficiently.
With our optimized implementation, we empirically incur
an increase in training time of less than 25% (a stark im-
provement over the direct gradient computation which had
an overhead of around 540%) and a memory overhead of
less than 80% (a 2× improvement) in the same setting as
used for comparison in Section 3.

5 Efficiently Computing the GAR
This section details the efficient computation of the GAR,
the method would work without the following strategies, but
not as fast and memory-saving.

The GAR is the dot product between a batch gradient
and an example gradient. In this section we assume we are
given some arbitrary batch gradient g and compute the align-
ment of it with each example gradient of a given batch. To
compute the gradient-alignment reward efficiently we use
the BACKPACK package (Dangel, Kunstner, and Hennig
2020), which gives us easy access to the incoming gradi-
ents of each layer. The full gradients of a model are a con-
catenation of the weights of multiple layers. The dot product
between two full model gradients is thus the sum of the dot
products between the weights of their respective layers. Be-
low we show how we compute gradient dot products for the
three main weight types in neural networks. We refer to the
batch size as n and arbitrary dimensions that depend on the
model as di for some integer i.

In our derivations we use the per-example gradient
∂`i/∂w of a weight w, which is only cleanly defined as part
of the batch gradient if there is no interaction between the
example computations in a batch. This is the case in most
current neural networks if batch normalization is not used.

Biases Biases in neural networks are a simple vector addi-
tion of a bias vector b ∈ Rd1×···×dk to each hidden state xi in
a batched hidden state x ∈ Rn×d1×···×dk . The computation
performed with a bias is x′i = xi+ b. We receive the incom-
ing gradient ∂`/∂x′ ∈ Rn×d1×···×dk from PyTorch's auto-
grad (Paszke et al. 2017). We simply compute 〈(∂`/∂x′)i, g〉
for all i ∈ {1, . . . , n} sequentially. Biases are usually only
small, thus this is not very expensive in general.

Linears Linears perform matrix multiplications between
a batch of incoming hidden vectors x ∈ Rn×d1 and a
weight matrix w ∈ Rd1×d2 to yield a new batch of hid-
den vectors x′ = x · w ∈ Rn×d2 . The per-example gradient

for the i-th example can be computed as the outer-product
∂`i/∂w = xi · (∂`/∂x′)ᵀi , where ∂`/∂x′ ∈ Rn×d2 is com-
puted by autograd.

Lemma 2. The dot product between the per-example gradi-
ent ∂`i/∂w and the given next batch gradient g is (xᵀi · g) ·
(∂`/∂x′)i.

The proofs of Lemmas 2 and 3 are given in Appendix A.
Based on Lemma 2, for a given batch we can compute

the dot product with the element-wise gradient as (x · g) ·
(∂l/∂x′)ᵀ. This way of computing the dot products is only
marginally more expensive than a forward pass and requires
much less memory than computing the products sequen-
tially. A similar derivation for computing gradient norms
was previously shown by Dangel, Kunstner, and Hennig
(2020).

Convolutions Convolutions are an essential component of
most neural network architectures for vision tasks. In the fol-
lowing we will only discuss the single channel case with im-
plicit zero-padding and a stride of one for simplicity, but the
analysis extends to many channels, other padding strategies
and strides. To introduce our highly optimized implemen-
tation, we first remember the operation a convolution with
a convolution matrix K ∈ Rc1×c2 performs on an input
x ∈ Rn1×n2 . Unlike previously, for this optimization it is
enough to consider a single example of size n1 × n2 instead
of a batch. To simplify the problem, we assume the height
and width of the kernel, c1 and c2, to be odd. Since we use
zero-padding we assume in the following calculations that
out of bounds indexes yield zeros, or equivalently that x has
an all zero frame of widths b c12 c and b c22 c in dimension 2
and 3. We can now define the convolution operator as

x′i1,i2 = (x ∗K)i1,i2

=

c1∑
j1=1

c2∑
j2=1

Kj1,j2 · xi1+j1−b c12 c,i2+j2−b c22 c,

where we denote indexes as function arguments. Further we
recall that the gradient of a convolution towards its weight
∂`
∂K can be defined as

∂`

∂Kj1,j2

=

n1∑
i1=1

n2∑
i2=1

∂`

∂x′i1,i2
· xi1+j1−b c12 c,i2+j2−b c22 c.

Lemma 3. Given the above assumptions on the convolution
function, we have that the dot product of a given matrix g ∈
Rc1×c2 with each per-example gradient can be written as
〈g, ∂`i∂K 〉 =

∑n1

i1=1

∑n2

i2=1
∂`

∂x′i1,i2

· (x ∗ g)i1,i2

The new form of the dot product simply consists of an
element-wise product between the incoming gradient and
the result of using g instead of K in the convolution. Thus,
we can compute the dot product between g and the gradi-
ent of each individual example in a batch very cheaply. The
costs are the same as the forward pass through the convolu-
tion except for the final dot product.



6 Experiments
We performed experiments in two different setups. We will
first detail an interpretable and easy-to-reproduce toy exper-
iment, than we will detail the application of the GAR of in-
loop meta learning of augmentations.

Illustrative Example: Batch Sampling Distribution
We perform a motivational experiment on a small toy task.
We split the CIFAR-10 dataset into 10 equally sized parts
and on the zeroth part we replace all labels with labels
drawn uniformly at random. Therefore, on split 0 most la-
bels are wrong. Things learned from split 0 will, thus, gen-
eralize badly to other splits. For each example in an SGD
batch, we first sample the split from a learned distribution
and then uniformly sample from within that split. We make
experiments with three networks: a fully-connected network
with a single hidden layer of size 200 (FC), the same fully-
connected network but with BatchNorm (Ioffe and Szegedy
2015) (FCBN ) and a small CNN (CNNBN ) with a single
convolution of size 3 from the input to a single channel, fol-
lowed by BatchNorm and a linear layer. In all networks we
use ReLU activations between layers. We use a batch size of
1000, train for 10 epochs and apply an SGD optimizer with
Nesterov momentum of 0.9, a .0005 L2 regularization and
a fixed learning rate of 0.1. As for the meta optimization,
we parameterize the distribution over splits by an ”inverted”
softmax distribution generated from learned logits s, that is
p(s)i ∼ 1 − softmax(s)i. This is useful compared to other
distributions, since we saw that, while softmax has a bias
towards a single winner, this has a tendency towards a sin-
gle loser. To train s online with GAR we use policy gradient.
We aggregate gradients over 10 steps, normalize the rewards
for each step and use Adam (Kingma and Ba 2015) with a
learning rate of 0.1. To compare our method fairly. We com-
pare it to NSLR, as proposed in section 4, which is much
simpler, but still novel. While there is only one NSLR re-
ward per step, this baseline yields a bias free estimator of
the true stochastic meta-gradient. We performed all experi-
ments with 10 different seeds. In Figure 2 we show the allo-
cation of p(s) over time for GAR and the NSLR, as well as
training losses over time, the usage of each bucket, for the
fully-connected network with batch norm. We can see that
GAR presses down the noisy category with little variance
in Figure 2b, while the baseline does not succeed in omit-
ting the noisy data, as we see in Figure 2a. In Figure 2c we
see how this impacts training losses of the two setups. We

Net Method Noisy Split Other Splits

FCBN
GAR 0.61 0.93
NSLR 0.96 0.89

FC GAR 0.65 0.93
NSLR 0.86 0.90

CNNBN
GAR 0.69 0.92
NSLR 0.92 0.90

Table 1: Average AUC for the split probability over 10
epochs of (non-)noisy splits for different architectures.

could see similar results for the other setups and show the
area under the curve (AUC) of the split probability (the us-
age) for these in Table 1. An optimal method would show a
low AUC for the noisy split, but a high AUC for the other
splits. It would, thus omit training on noisy data, but not
omit training on any of the non-noisy splits. To experiment
with different networks, setups or add noise to the images
instead of the labels, we refer to our public colab notebook1

generating these experiments with no setup.

PBA Fast AA AA RA OLA (WL) OLA (RA)
CIFAR-10
UA Baseline - - - - 97.61 ± 0.16 97.51 ± 0.18
Method 97.4 97.3 97.4 97.3 97.39 ± 0.15 97.56 ± 0.07
CIFAR-100
UA Baseline - - - - 83.20 ± 0.34 83.40 ± 0.09
Method 83.3 82.7 82.9 83.3 84.30 ± 0.40 83.54 ± 0.14

Table 2: Results of the OLA experiments. The results are test
accuracies and the 95% confidence interval is noted with ±.

Online-Learned Augmentation-Strategy
The choice of image augmentation was shown to have
enough impact to improve performance considerably
(Cubuk et al. 2019). We apply the GAR to learn the aug-
mentation policy online. We refer to this method as Online-
Learned Augmentation-Strategy (OLA). We use a setup in-
spired by RandAugment (Cubuk et al. 2020). We have a set
of augmentationsA and for each image we sample a learned
number r ∈ {1, . . . , 4} of augmentations a1, . . . , ar ∈ A
uniformly without replacement. r itself is sampled from a
learned distribution p(r) = softmax(l(r)). We apply each
augmentation ai in sampling order to the example image,
each with a sampled strength kai ∈ {0, . . . , 30}. kai is sam-
pled from the distribution p(kai) = softmax(l

(a)
ai ), which

depends on the applied augmentation ai. Each sampled aug-
mentation ai is actually applied with a learned probabil-
ity p(dai) = σ(l

(d)
ai ). A sampled augmentation might thus

not be applied after all. In the above all logits l(r) ∈ R4,
l(a) ∈ R|A|×31 and l(d) ∈ R|A| are learned weights and
initialized to zero. We outline the augmentation sampling
process in Algorithm 2.

We perform our evaluations on CIFAR-10 and CIFAR-
100 using a WideResnet-28-10 (Zagoruyko and Komodakis
2016) and follow the setup of Cubuk et al. (2020) in detail,
but we use a larger batch size of 256. We keep the number of
epochs stable, though, such that we do not have an unfair ad-
vantage. To prevent the augmentation distribution from col-
lapsing we interleave steps with learned augmentations with
steps that do not use augmentations. Such that we consider
alignments of augmented examples with a non-augmented
batch. For maximal efficiency we use the gradients com-
puted on non-augmented batches not only to compute the
GAR, but treat them as normal steps in the main training
and update the neural network with them. Like before we

1https://bit.ly/34K7aAT



(a) (b) (c)

Figure 2: Average split distribution of the NSLR baseline (a) and GAR (b) across epochs. Training losses are given in (c).

Algorithm 2 OLA Augmentation Sampling Procedure
1: receive sample image x
2: sample the number of augmentations r ∼ p(r)
3: sample the augmentations to apply a1, . . . , ar uniformly

at random without replacement from A
4: for i ∈ {1, . . . , r} do
5: sample keep indicator dai ∼ p(dai)
6: if dai then
7: sample strength kai ∼ p(kai)
8: apply the augmentation x← ai(x, k)
9: end if

10: end for

Algorithm 3 UA Augmentation Sampling Procedure
1: receive sample image x
2: sample the augmentations to apply a1 and a2 uniformly

at random without replacement from A
3: for i ∈ {1, 2} do
4: sample keep indicator d ∼ Bern(0.5)
5: if d then
6: sample strength k uniformly at random from

{0, . . . , 30}
7: apply the augmentation x← ai(x, k)
8: end if
9: end for

use Adam for the meta optimization. We set the learning rate
of Adam to 0.1, normalize the rewards in each batch and do
not aggregate meta gradients.

We compare OLA with a set of common augmentation
strategies, most of which have to pre-trained. We com-
pare with Population based Augmentation (PBA; Ho et al.
2019), AutoAugment (AA; Cubuk et al. 2019), Fast AA
(Lim et al. 2019) and RandAugment (RA; Cubuk et al.
2020). So far in the literature little attention was given to
the search space. Most previous work use slightly different
search spaces. PBA, AA and RandAugment all have slightly
different search spaces for example. In our experiments we
found the search space choice to be important. We reim-
plemented UniformAugment (UA; LingChen et al. 2020)
and found that surprisingly in our setup we could consider-
ably improve the performance of our reimplementation of
UA depending on the search space, something we were not
able to do for RA. Therefore, unlike previous work, we pro-
vide our reimplementation of UA as an additional baseline,

since it was evaluated under the exact same settings. Algo-
rithm 3 outlines our reimplementation of UA. We made two
main changes: We sample strengths k from a range of inte-
ger values instead of a real-valued range, to align with our
comparisons, and we sample the augmentations without re-
placement, which makes the set of applied augmentations
more diverse. Other than that, we removed the double sam-
pling of the keep probability and replaced with an equivalent
single sampling.

In Table 2 we show the average test accuracies over 5
runs of our method and the UA baselines with confidence
bounds and the comparisons from literature. We evaluated
our method on two different search spaces, which we denote
in parentheses for our evaluations. The search space RA is
equivalent to the search space used for RandAugment, while
WideLong (WL) is a search space that includes more ex-
treme strength settings and more augmentations, see Table
3. While our method and its baseline perform well in com-
parison to previous methods, the comparison we want to fo-
cus on is the comparison with our reimplementation of UA,
since we share all setup with it. For CIFAR-10 one can see
here, that we are performing similar to the strong baselines
for both search spaces. For CIFAR-100 we outperform the
baselines in both cases by at least the 95% confidence inter-
val. Note, that unlike previous methods we do not pre-train
or do hyper-parameter search on a per-dataset basis. Our re-
sults point out that over different setups our method works
either comparable or better than previous methods and the
UA baseline, while other methods like AA, are expensively
pre-trained for each dataset. Also worthy of mention is how
well the UA baseline performs, even for the larger search
space, compared to learned methods.

7 Conclusion

We presented a way of adapting meta parameters φ online
during SGD training of the elementary network parameters
θ that is efficient in terms of data, memory and time and
applies to optimizing non-differentiable distributions during
training. Key to our approach is the Gradient Alignment
Reward, which allows using reinforcement learning with
unique per-sample rewards. We showed its benefits on an
interpretable toy task and a real world task. This method has
many potential future applications like large scale learned
curricula or neural architecture search.
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A Proofs of Lemmas 2 and 3
Proof of Lemma 2.

〈∂`i/∂w, g〉 =
d1∑
k1=1

d2∑
k2=1

(∂`i/∂w)k1,k2 · gk1,k2

= Tr((∂`i/∂w)
ᵀ · g)

= Tr((xi · (∂`/∂x′)ᵀi )
ᵀ · g)

= Tr(((∂`/∂x′)i · xᵀi ) · g)
= Tr((∂`/∂x′)i · (xᵀi · g))
= 〈(∂`/∂x′)i, (xᵀi · g)〉.

Proof of Lemma 3.
c1∑
j1=1

c2∑
j2=1

∂`

∂Kj1,j2

· gj1,j2

=

c1∑
j1=1

c2∑
j2=1

n1∑
i1=1

n2∑
i2=1

∂`

∂x′i1,i2
· xi1+j1−b c12 c,i2+j2− c2

2
· gj1,j2

=

n1∑
i1=1

n2∑
i2=1

∂`

∂x′i1,i2

c1∑
j1=1

c2∑
j2=1

xi1+j1−b c12 c,i2+j2−b
c2
2 c
· gj1,j2

=

n1∑
i1=1

n2∑
i2=1

∂`

∂x′i1,i2
· (x ∗ g)i1,i2 .

B WideLong Search Space

PIL operation range PIL operation range

identity - auto contrast -
equalize 0.01 - 2.0 rotate −135◦ - 135◦
solarize 0 - 256 color 0.01 - 2.0

posterize 0.01 - 2.0 contrast 0.01 - 2.
brightness 2 - 8 sharpness 0.01 - 2.0

shear x 0.0 - 0.99 shear y 0.0 - 0.99
translate x 0 - 32 translate y 0 - 32

blur - invert -
flip lr - flip ud -
cutout 0 - 19

Table 3: The WideLong (WL) search space. All methods are
defined as part of Pillow (https://github.com/python-pillow/
Pillow), as part of ImageEnhance, ImageOps or as image
attribute, besides cutout (DeVries and Taylor 2017).


