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A More details on DE
Differential Evolution (DE) is a simple, well-performing evo-
lutionary algorithm to solve a variety of optimization prob-
lems [K. Price and Lampinen, 2006] [Das et al., 2016]. This
algorithm was originally introduced in 1995 by Storn and
Price [Storn and Price, 1997], and later attracted the attention
of many researchers to propose new improved state-of-the-art
algorithms [Chakraborty, 2008]. DE is based on four steps:
initialization, mutation, crossover and selection. Algorithm 1
presents the DE pseudo-code.

Initialization. DE is a population-based meta-heuristic
algorithm which consists of a population of N individuals.
Each individual is considered a solution and expressed as a
vector of D-dimensional decision variables as follows:

popg = (x1i,g, x
2
i,g, ..., x

D
i,g), i = 1, 2, ..., N, (1)

where g is the generation number, D is the dimension of the
problem being solved and N is the population size. The al-
gorithm starts initially with randomly distributed individuals
within the search space. The function value for the problem
being solved is then computed for each individual, f(x).

Mutation. A new child/offspring is generated using the
mutation operation for each individual in the population by a
so called mutation strategy. Figure 1 illustrates this operation
for a 2-dimensional case. The classical DE uses the mutation
operator rand/1, in which three random individuals/parents
denoted as xr1 , xr2 , xr3 are chosen to generate a new vector
vi as follows:

vi,g = xr1,g + F · (xr2,g − xr3,g), (2)

where vi,g is the mutant vector generated for each individual
xi,g in the population. F is the scaling factor that usually
takes values within the range (0, 1] and r1, r2, r3 are the in-
dices of different randomly-selected individuals. Eq.2 allows
some parameters to be outside the search range, therefore,
each parameter in vi,g is checked and reset1 if it happens to
be outside the boundaries.

Crossover. When the mutation phase is completed, the
crossover operation is applied to each target vector xi,g and
its corresponding mutant vector vi,g to generate a trial vec-
tor ui,g . Classical DE uses the following uniform (binomial)

1a random value from [0, 1] is chosen uniformly in this work
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Figure 1: Illustration of DE Mutation operation for a 2-dimensional
case using the rand/1 mutation strategy. The scaled difference vector
(F.(xr2 − xr3)) is used to determine the neighbourhood of search
from xr1 . Depending on the diversity of the population, DE muta-
tion’s search will be explorative or exploitative

crossover:

uji,g =

{
vji,g if (rand ≤ p) or (j = jrand)

xji,g otherwise
(3)

The crossover rate p is real-valued and is usually specified
in the range [0, 1]. This variable controls the portion of pa-
rameter values that are copied from the mutant vector. The
jth parameter value is copied from the mutant vector vi,g to
the corresponding position in the trial vector ui,g if a random
number is less than or equal to p. If the condition is not satis-
fied, then the jth position is copied from the target vector xi,g .
jrand is a random integer in the range [1, D] to ensure that
at least one dimension is copied from the mutant, in case the
random number generated for all dimensions is >p. Figure 2
shows an illustration of the crossover operations.

Selection. After the final offspring is generated, the se-
lection operation takes place to determine whether the target
(the parent, xi,g) or the trial (the offspring, ui,g) vector sur-
vives to the next generation by comparing the function values.
The offspring replaces its parents if it has a better2 function

2DE is a minimizer
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Figure 2: Illustration of DE Crossover operation for a 2-dimensional
case using the binomial crossover. The vertex of the rectangle shows
the possible solutions of between a parent x and mutant v. Based on
the choice of p, the resultant individual will either be a copy of the
parent, or the mutant, or incorporate either component from parent
and mutant

value as shown in Equation 4. Otherwise, the new offspring
is discarded, and the target vector remains in the population
for the next generation.

xi,g =

{
ui,g if (f(ui,g) ≤ f(xi,g))
xi,g otherwise

(4)

Algorithm 1: DE Optimizer
Input:
f - black-box problem
F - scaling factor (default F = 0.5)
p - crossover rate (default p = 0.5)
N - population size
Output: Return best found individual in pop

1 g = 0, FE = 0;
2 popg ← initial population(N , D);
3 fitnessg ← evaluate population(popg);
4 FE = N ;
5 while (FE < FEmax) do
6 mutate(popg);
7 offspringg ← crossover(popg);
8 fitnessg ← evaluate population(offspringg);
9 popg+1,fitnessg+1← select(popg ,offspringg);

10 FE = FE + N ;
11 g = g+1;
12 end
13 return Individual with highest fitness seen

B More details on Hyperband
The Hyperband [Li et al., 2017] (HB) algorithm was de-
signed to perform random sampling with early stopping based

on pre-determined geometrically spaced resource allocation.
For DEHB we replace the random sampling with DE search.
However, DEHB uses HB at its core to solve the “n versus
B/n” tradeoff that HB was designed to address. Algorithm
2 shows how DEHB interfaces HB to query the sequence of
how many configurations of each budget to run at each itera-
tion. This view treats the DEHB algorithm as a sequence of
predetermined (by HB), repeating Successive Halving brack-
ets where, iteration number refers to the index of SH brackets
run by DEHB.

Algorithm 2: A SH bracket under Hyperband
Input:
bmin, bmax - min and max budgets
η - fraction of configurations promoted
iteration - iteration number
Output: List of no. of configurations and budgets

1 smax = blogη bmax

bmin
c

2 s = smax − (iteration mod (smax + 1))

3 N = d smax+1
s+1 · ηse

4 b0 =
bmax

bmin
· η−s

5 budgets = n configs = []
6 for i ∈ {0, ..., s} do
7 Ni = bN · η−ic
8 b = b0 · ηi
9 n configs.append(Ni)

10 budgets.append(b)
11 end
12 return n configs, budgets

C More details on DEHB
C.1 DEHB algorithm
Algorithm 3 gives the pseudo code describing DEHB. DEHB
takes as input the parameters for HB (bmin, bmax, η) and the
parameters for DE (F , p). For the experiments in this pa-
per, the termination condition was chosen as the total num-
ber of DEHB brackets to run. However, in our implementa-
tion it can also be specified as the total absolute number of
function evaluations, or a cumulative wallclock time as bud-
get. L6 is the call to Algorithm 2 which gives a list of bud-
gets which represent the sequence of increasing budgets to be
used for that SH bracket. The nomenclature DE[budgets[i]],
used in L9 and L12, indicates the DE subpopulation asso-
ciated with the budgets[i] fidelity level. The if...else block
from L11-15 differentiates the first DEHB bracket from the
rest. During the first DEHB bracket (bracket counter== 0)
and its second SH bracket onwards (i>0), the top configura-
tions from the lower fidelity are promoted3 for evaluation in
the next higher fidelity. The function DE trial generation on
L14, i.e, the sequence of mutation-crossover operations, gen-
erates a candidate configuration (config) to be evaluated for

3only evaluate on higher budget and not evolve using mutation-
crossover-selection



all other scenarios. L17 carries out the DE selection proce-
dure by comparing the fitness score of config and the selected
target for that DE evolution step. The target (xi,g from Equa-
tion 3) is selected on L9 by a rolling pointer over the sub-
population list. That is, for every iteration (every increment
of j) a pointer moves forward by one index position in the
subpopulation selecting an individual to be a target. When
this pointer reaches the maximal index, it resets to point back
to the starting index of the subpopulation. L18 compares the
score of the last evaluated config with the best found score so
far. If the new config has a better fitness score, the best found
score is updated and the new config is marked as the incum-
bent, configinc. This stores the best found configuration as
an anytime best performing configuration.

Algorithm 3: DEHB
Input:
bmin, bmax - min and max budgets
η - (default η=3)
F - scaling factor (default F = 0.5)
p - crossover rate (default p = 0.5)
Output: Best found configuration, configinc

1 smax = blogη bmax

bmin
c

2 Initialize (smax + 1) DE subpopulations randomly
3 bracket counter = 0
4 while termination condition do
5 for iteration ∈ {0, 1, ..., smax} do
6 budgets, n configs =

SH bracket under HB(bmin, bmax, η,
iteration)

7 for i ∈ {0, 1, ..., smax − iterations} do
8 for j ∈ {1, 2, ..., n configs[i]} do
9 target = rolling pointer for

DE[budgets[i]]
10 mutation types = “vanilla” if i is 0

else “altered”
11 if bracket counter is 0 and i >0 then
12 config = j-th best config from

DE[budgets[i− 1]]
13 else
14 config =

DE trial generation(target,
mutation type)

15 end
16 result = Evaluate config on

budgets[i]
17 DE selection using result, config vs.

target
18 Update incumbent, configinc
19 end
20 end
21 end
22 bracket counter += 1
23 end
24 return configinc
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Figure 3: Comparing DEHB
encodings for the Stochastic
Counting Ones problem in 64
dimensional space with 32 cat-
egorical and 32 continuous hy-
perparameters. Results for all
algorithms on 50 runs.
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Figure 4: Comparing DEHB
encodings for the Cifar-100
dataset from NAS-Bench-201’s
6-dimensional space. Results
for all algorithms on 50 runs.

C.2 Handling Mixed Data Types
When dealing with discrete or categorical search spaces, such
as the NAS problem, the best way to apply DE with such pa-
rameters is to keep the population continuous and perform
mutation and crossover normally (Eq. 2, 3); then, to evaluate
a configuration we evaluate a copy of it in the original discrete
space as we explain below. If we instead dealt with a dis-
crete population, then the diversity of population would drop
dramatically, leading to many individuals having the same
parameter values; the resulting population would then have
many duplicates, lowering the diversity of the difference dis-
tribution and making it hard for DE to explore effectively. We
designed DEHB to scale all parameters of a configuration in a
population to a unit hypercube [0, 1], for the two broad types
of parameters normally encountered:

• Integer and float parameters, Xi ∈ [ai, bi] are retrieved
as: ai+(bi−ai) ·Ui,g , where the integer parameters are
additionally rounded.

• Ordinal and categorical parameters, Xi ∈ {x1, ..., xn},
are treated equivalently s.t. the range [0, 1] is divided
uniformly into n bins.

We also experimented with another encoding design where
each category in each of the categorical variables are repre-
sented as a continuous variables [0, 1] and the variable with
the max over the continuous variables is chosen as the cat-
egory [Vallati et al., 2015]. For example, in Figure 3, the
effective dimensionality of the search space will become 96-
dimensional — 32 continuous variables + 64 continuous vari-
ables derived from 32 binary variables. We choose a repre-
sentative set of benchmarks (NAS-Bench-201 and Counting
Ones) to compare DEHB with the two encodings mentioned,
in Figures 3, 4. It is enough to see one example which per-
forms much worse than the DE-NAS [Awad et al., 2020] en-
coding we chose for DEHB. The encoding from [Vallati et al.,
2015] did not achieve a better final performance than DEHB
in any of our experiments.

C.3 Parallel Implementation
The DEHB algorithm is a sequence of DEHB Brackets,
which in turn are a fixed sequence of SH brackets. This fea-
ture, along with the asynchronous nature of DE allows a par-
allel execution of DEHB. We dub the main process as the



DEHB Orchestrator which maintains a single copy of all DE
subpopulations. An HB bracket manager determines which
budget to run from which SH bracket. Based on this input
from the bracket manager, the orchestrator can fetch a config-
uration4 from the current subpopulations and make an asyn-
chronous call for its evaluation on the assigned budget. The
rest of the orchestrator continues synchronously to check for
free workers, and query the HB bracket manager for the next
budget and SH bracket. Once a worker finishes computation,
the orchestrator collects the result, performs DE selection and
updates the relevant subpopulation accordingly. This form of
an update is referred to as immediate, asynchronous DE.

DEHB uses a synchronous SH routine. Though each of the
function evaluations at a particular budget can be distributed,
a higher budget needs to wait on all the lower budget evalu-
ations to be finished. A higher budget evaluation can begin
only once the lower budget evaluations are over and the top
1/η can be selected. However, the asynchronous nature of DE
allows a new bracket to begin if a worker is available while
existing SH brackets have pending jobs or are waiting for re-
sults. The new bracket can continue using the current state
of DE subpopulations maintained by the DEHB Orchestra-
tor. Once the pending jobs from previous brackets are over,
the DE selection updates the DEHB Orchestrator’s subpop-
ulations. Thus, the utilisation of available computational re-
sources is maximized while the central copy of subpopula-
tions maintained by the Orchestrator ensures that each new
SH bracket spawned works with the latest updated subpopu-
lation.

D More details on Experiments
D.1 Baseline Algorithms
In all our experiments we keep the configuration of all the
algorithms the same. These settings are well-performing
setting that have been benchmarked in previous works —
[Falkner et al., 2018], [Ying et al., 2019], [Awad et al., 2020].

Random Search (RS) We sample random architectures in
the configuration space from a uniform distribution in each
generation.

BOHB We used the implementation from https://github.
com/automl/HpBandSter. In [Ying et al., 2019], they identi-
fied the settings of key hyperparameters as: η is set to 3, the
minimum bandwidth for the kernel density estimator is set to
0.3 and bandwidth factor is set to 3. In our experiments, we
deploy the same settings.

Hyperband (HB) We used the implementation from https:
//github.com/automl/HpBandSter. We set η = 3 and this pa-
rameter is not free to change since there is no other different
budgets included in the NAS benchmarks.

Tree-structured Parzen estimator (TPE) We used
the open-source implementation from https://github.com/
hyperopt/hyperopt. We kept the settings of hyperparameters
to their default.

Sequential Model-based Algorithm Configura-
tion (SMAC) We used the implementation from

4DE mutation and crossover to generate configuration

https://github.com/automl/SMAC3 under its default pa-
rameter setting. Only for the Counting Ones problem with
64-dimensions, the initial design had to be changed to a
Latin Hypercube design, instead of a Sobol design.

Regularized Evolution (RE) We used the implementation
from [Real et al., 2019]. We initially sample an edge or op-
erator uniformly at random, then we perform the mutation.
After reaching the population size, RE kills the oldest mem-
ber at each iteration. As recommended by [Ying et al., 2019],
the population size (PS) and sample size (TS) are set to 100
and 10 respectively.

Differential Evolution (DE) We used the implementation
from [Awad et al., 2020], keeping the rand1 strategy for mu-
tation and binomial crossover as the crossover strategy. We
also use the same population size of 20 as [Awad et al., 2020].

All plots for all baselines were plotted for the incumbent
validation regret over the estimated wallclock time, ignoring
the optimization time. The x-axis therefore accounts for only
the cumulative cost incurred by function evaluations for each
algorithm. All algorithms were run for similar actual wall-
clock time budget. Certain algorithms under certain bench-
marks may not appear to have equivalent total estimated wall-
clock time. That is an artefact of ignoring optimization time.
Model-based algorithms such as SMAC, BOHB, TPE have
a computational cost dependent on the observation history.
They might undertake lesser number of function evaluations
for the same actual wallclock time.

D.2 Artificial Toy Function: Stochastic Counting
Ones
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Figure 5: Results for the Stochastic Counting Ones problem for
N = {4, 8, 16, 32} respectively indicating N categorical and N
continuous hyperparameters for each case. All algorithms shown
were run for 50 runs.

The Counting Ones benchmark was designed to minimize
the following objective function:

f(x) = −

 ∑
xi∈Xcat

xi +
∑

xj∈Xcont

Eb[(Bp=xj
)]

 ,

where the sum of the categorical variables (xi ∈ {0, 1}) rep-
resents the standard discrete counting ones problem. The con-
tinuous variables (xj ∈ [0, 1]) represent the stochastic com-
ponent with the budget b controlling the noise. The budget

https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/automl/SMAC3


here represents the number of samples used to estimate the
mean of the Bernoulli distribution (B) with parameters xj .

The experiments on the Stochastic Counting Ones bench-
mark used N = {4, 8, 16, 32}, all of which are shown in Fig-
ure 5. For the low dimensional cases, BOHB and SMAC’s
models are able to give them an early advantage. For this toy
benchmark the global optima is located at the corner of a unit
hypercube. Random samples can span the lower dimensional
space adequately for a model to improve the search rapidly.
DEHB on the other hand may require a few extra function
evaluations to reach similar convergence. However, this con-
servative approach aids DEHB for the high-dimensional cases
where it is able to converge much more rapidly in comparison
to other algorithms. Especially where SMAC and BOHB’s
convergence worsens significantly. DEHB thus showcases
its robust performance even when the dimensionality of the
problem increases exponentially.

D.3 Feed-forward networks on OpenML datasets
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Figure 6: Results for the OpenML surrogate benchmark for the 6
datasets: Adult, Higgs, Letter, MNIST, Optdigits, Poker. The search
space had 6 continuous hyperparameters. All plots shown were av-
eraged over 50 runs of each algorithm.

Figure 6, show the results on all 6 datasets from OpenML
surrogates benchmark — Adult, Letter, Higgs, MNIST,
Optdigits, Poker. The surrogate model space is just 6-
dimensional, allowing BOHB and TPE to build more confi-
dent models and be well-performing algorithms in this space,
especially early in the optimization. However, DE and DEHB
are able to remain competitive and consistently achieve an
improved final performance than TPE and BOHB respec-
tively. While even TPE achieves a better final performance
than BOHB. Overall, DEHB is a competetive anytime per-
former for this benchmark with the most robust final perfor-
mances.

D.4 Bayesian Neural Networks
The search space for the two-layer fully-connected Bayesian
Neural Network is defined by 5 hyperparameters which are:
the step length, the length of the burn-in period, the number
of units in each layer, and the decay parameter of the momen-
tum variable. In Figure 7, we show the results for the tuning
of Bayesian Neural Networks on both the Boston Housing
and Protein Structure datasets for the 6-dimensional Bayesian
Neural Networks benchmark. We observe that SMAC, TPE
and BOHB are able to build models and reach similar re-
gions of performance with high confidence. DEHB is slower
to match in such a low-dimensional noisy space. However,
given the same cumulative budget, DEHB achieves a com-
petitive final score.
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Figure 7: Results for tuning 5 hyperparameters of a Bayesian Neural
Network on the the Boston Housing and Protein Structure datasets
respectively, for 50 runs of each algorithm.

D.5 Reinforcement Learning
For this benchamrk, the proximal policy optimization (PPO)
[Schulman et al., 2017] implementation is parameterized with
7 hyperparameters: # units layer 1, # units layer 2, batch size,
learning rate, discount, likelihood ratio clipping and entropy
regularization. Figure 8 summarises the performance of all
algorithms on the RL problem for the Cartpole benchmark.
SMAC uses a SOBOL grid as its initial design and both its
benefit and drawback can be seen as SMAC rapidly improves,
stalls, and then improves again once model-based search be-
gins. However, BOHB and DEHB both remain competi-
tive and BOHB, DEHB, SMAC emerge as the top-3 for this
benchmark, achieving similar final scores. We notice that
the DE trace stands out as worse than RS and will explain
the reason behind this. Given the late improvement for DE
pop = 20, we posit that this is a result of the deferred updates
of DE based on the classical DE [Awad et al., 2020] update
design and also the design of the benchmark.

For classical-DE, the updates are deferred, that is the re-
sults of the selection process are incorporated into the popu-
lation for consideration in the next evolution step, only after
all the individuals of the population have undergone evolu-
tion. In terms of computation, the wall-clock time for popu-
lation size number of function evaluations are accumulated,
before the population is updated. In Figure 8 we illustrate
why given how this benchmark is designed, this minor de-
tail for DE slows down convergence. Along with a DE of
population size 20 as used in the experiments, we compare
a DE of population size 10 in Figure 8. For the Reinforce-
ment Learning benchmark from [Falkner et al., 2018], each
full budget function evaluation consists of 9 trials of a maxi-
mum of 3000 episodes. With a population of 20, DE will not



inject a new individual into a population unless all 20 individ-
uals have participated as a parent in the crossover operation.
This accumulates wallclock time equivalent to 20 individu-
als times 9 trials times time taken for a maximum of 3000
episodes. Which can explain the flat trajectories in the op-
timization trace for DE pop = 20 in Figure 8 (right). DE
pop = 10 slashes this accumulated wallclock time in half
and is able to inject newer configurations into the population
faster and is able to search faster. Given enough runtime,
we expect DE pop = 20 to converge to similar final scores.
DEHB uses the immediate update design for DE, wherein it
updates the population immediately after a DE selection, and
not wait for the entire population to evolve. We posit that this
feature, along with lower fidelity search, and performing grid
search over population sizes with Hyperband, enables DEHB
to be more practical than classical-DE.

102 103 104

time [s]
102

103

104

ep
oc

hs
 u

nt
il 

co
nv

er
ge

nc
e

cartpole

RS
HB
BOHB
TPE

SMAC
RE
DE
DEHB

104 105

time [s]
102

103

104

ep
oc

hs
 u

nt
il 

co
nv

er
ge

nc
e

Cartpole

RS
DE pop = 10
DE pop = 20

Figure 8: (left) Results for tuning PPO on OpenAI Gym cartpole
environment with 7 hyperparameters. Each algorithm shown was
run for 50 runs. (right) Same experiment to compare DE with a
population size of 10 and 20.

D.6 NAS benchmarks
NAS-Bench-101
This benchmark was the first NAS benchmark relying on tab-
ular lookup that was introduced to encourage research and
reproducibility [Ying et al., 2019]. Each architecture from
the search space is represented as a stack of cells. Each cell
is treated as a directed acyclic graph (DAG) and the nodes
and edges of these DAGs are parameterized which serve as
the hyperparameters specifying a neural network architecture.
NAS-Bench-101 offers a large search space of nearly 423k
unique architectures that are trained on Cifar-10. The bench-
mark also offers a fidelity level — training epoch length —
which allows HB, BOHB, and DEHB, to run on this bench-
mark. We run experiments on all 3 variants provided by NAS-
101: Cifar A, Cifar B, Cifar C. The primary search space dis-
cussed by [Ying et al., 2019] is Cifar A; Cifar B and Cifar C
are variants of the same search space with alternative encod-
ings that deal with the hyperparameters defined on the edges
of the DAG as categorical or continuous.

In the NAS-Bench-101 benchmark, the correlation be-
tween the performance scores and the different budgets are
small [Ying et al., 2019], and therefore BOHB and DEHB do
not yield better performance than the methods using full func-
tion evaluations only. All 3 evolutionary algorithms tested
are able to exploit the discrete high-dimensional space much
better than model-based methods such as BOHB and TPE,
as seen by the performances of DE, DEHB and RE. While
DEHB appears to be the algorithm with the best anytime per-
formance in the high-dimensional discrete NAS space. DE

yields the final best performance, closely followed by DEHB.
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Figure 9: Results for Cifar A, B and C from NAS-Bench-101 for
26, 14, 27-dimensional spaces respectively. All algorithms reported
for 50 runs.

NAS-Bench-1shot1
NAS-Bench-1shot1 was introduced by [Zela et al., 2020], as
a benchmark derived from the large space of architectures of-
fered by NAS-Bench-101. This benchmark allows the use of
modern one-shot5 NAS methods with weight sharing ( [Pham
et al., 2018], [Liu et al., 2018]). The search space in NAS-
Bench-1shot1 was modified to accommodate one-shot meth-
ods by keeping the macro network-level topology of the ar-
chitectures similar and offering a different encoding design
for the cell-level topology. This resulted in three search
spaces: search space 1, search space 2 and search space 3
with 6240, 29160, and 363648 architectures respectively. In
Figure 10, we show the results on all 3 search spaces. We ex-
clude weight sharing methods from the algorithms compared,
in order to maintain parity across all experiments, while fo-
cusing on the objective of comparing black-box solvers.
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Figure 10: Results for the 3 search spaces from NAS-Bench-1shot1
for 50 runs of each algorithm. The 3 search spaces contains 9, 9, 11
categorical parameters respectively.

From among RS, TPE, SMAC, RE and DE — the full bud-
get algorithms — only DE is able to improve significantly as

5training a single large architecture that contains all possible ar-
chitectures in the search space



optimization proceeds. For the multi-fidelity algorithms —
HB, BOHB and DEHB — only DEHB is able to improve and
diverge away from HB by the end of optimization. BOHB,
HB, RS, TPE and RE all appear to follow a similar trace
showing the difficulty of finding good architectures in this
benchmark. Nevertheless, the DE-based family of algorithms
is able to further exploit the search space and show better
performance than the other algorithms. Though DE performs
the best, RE remains competitive, again suggesting the power
of evolutionary methods on discrete spaces. Among model-
based methods, only TPE competes with DEHB.

NAS-Bench-201
To alleviate issues of direct applicability of weight sharing
algorithms to NAS-Bench-101, [Dong and Yang, 2020] pro-
posed NAS-Bench-201. This benchmark contains a fixed cell
search space having DAGs with 4 nodes as the cell struc-
ture, and the edges of the DAG cells representing operations.
The search space by design contains 6 discrete/categorical hy-
perparameters. NAS-Bench-201 provides a lookup table for
3 datasets: Cifar-10, Cifar-100 and ImageNet16-120, along
with a fidelity level as number of training epochs. The search
space for all 3 datasets include 15,625 cells/architectures.
From the validation regret performances in Figure 11, it is
clear that DEHB quickly converges to strong solutions which
are a few orders of magnitude better than BOHB and RS (in
terms of regret). DE and RE are both competitive with RE
converging slightly faster than DE. Notably, DEHB is the
only multi-fidelity algorithm in this experiment that works
well.

NAS-Bench-201 specifies the same 6-dimensional discrete
hyperparameter space for the Cifar-10 and Cifar-100 datasets.
Figure 11 again shows that the evolutionary algorithms per-
form the best in a space defined by categorical parameters.
SMAC in this scenario is the best-of-the-rest, outside of
DEHB, RE and DE. BOHB evidently struggles to be even
significantly better than HB.
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Figure 11: Results for Cifar-10, Cifar-100, ImageNet16-120 from
NAS-Bench-201 for 50 runs of each algorithm. The search space
contains 6 categorical parameters.

NAS-HPO-Bench
To facilitate HPO research involving feed-forward neural
networks, [Klein and Hutter, 2019] introduced NAS-HPO-
Bench with a search space composed of hyperparameters that

parameterize the architecture of a 2-layer feed-forward net-
work6, along with hyperparameters for its training proce-
dure. The primary difference between NAS-HPO from the
OpenML surrogates benchmark is that in the latter, a random
forest model was used as a surrogate to approximate the per-
formance for configurations. NAS-HPO-Bench is designed in
the same vein as the other NAS benchmarks discussed earlier.
For the total of 9 discrete hyperparameters (4 for architec-
ture + 5 for training), all 62208 configurations resulting from
a grid search over the search space were evaluated to yield
a tabular representation for configuration and performance
mapping. The benchmark provides such lookup tables for
4 popular UCI regression datasets: Protein Structure, Slice
Localization, Naval Propulsion and Parkinsons Telemonitor-
ing. NAS-HPO-Bench also provides the number of training
epochs as a fidelity level.
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Figure 12: Results for the Protein Structure, Slice Localization,
Naval Propulsions, Parkinsons Telemonitoring datasets from NAS-
HPO-Bench for 50 runs of each algorithm. The search space con-
tains 9 hyperparameters.

Figure 12 illustrates the performance of all algorithms on
the 4 datasets provided in NAS-HPO-Bench. As it appears,
barring RS and HB, all other algorithms are able to obtain
similar final scores for the benchmark with respect to the val-
idation set. BOHB and DEHB both diverge from HB and
start improving early on. However, DEHB continues to im-
prove and is able to converge the fastest. TPE, RE, DE all
compete with each other in terms of convergence rate, while
BOHB and SMAC show similar convergence speeds.

D.7 Comparison of DEHB to BO-based
multi-fidelity methods

BOHB [Falkner et al., 2018] showed that its KDE based BO
outperformed other GP-based BO methods. Hence, BOHB
was treated as the primary challenger to DEHB as a robust,
general multi-fidelity based HPO solver. In this section we
run experiments on the benchmarks detailed in the previous
sections, to compare DEHB to another popular multi-fidelity
BO optimizer, Dragonfly [Kandasamy et al., 2020] (in addi-
tion to BOHB). Dragonfly implements BOCA (Kandasamy et
al. [2017]) which performs BO with low-cost approximations
of function evaluations on fidelities treated as a continuous

6additionally, a linear output layer



domain. However, this GP-based BO method had longer exe-
cution time compared to other algorithms for the tabular/sur-
rogate benchmarks. In Figure 13 we therefore show average
of 32 runs for each algorithm, while having to terminate runs
earlier than other algorithms for certain cases. In this experi-
ment, we optimize the median performance of a configuration
over different seeds. We observe that Dragonfly shows a high
variance in performance across benchmarks whereas DEHB
is consistently the best or at worse, comparable to Dragonfly.
Moreover, BOHB performs clearly better than Dragonfly in
8 out of the 16 cases shown in Figure 13, while being com-
parable to Dragonfly in at least 4 other benchmarks. Drag-
onfly comes out as the best optimizer only for the Cifar10
dataset in the NAS-201 benchmark in Figure 13. These exper-
iments however, further illustrate the practicality, robustness,
and generality of DEHB compared to GP-based multi-fidelity
BO methods.

D.8 Results summary
In the previous experiments sections, results on all the bench-
marks for DEHB and all other baselines were reported
demonstrating the competitive and often superior anytime
performance of DEHB. In Table 1, we report the mean final
validation regret achieved by all algorithms across all the 26
benchmarks. DEHB got the best performance in nearly 1/3-
rd of the benchmarks while reporting the second-best perfor-
mance in over 1/4-th of all the benchmarks. The last row
of Table 1 shows the rank of each algorithm averaged across
their final performances on each benchmark. DEHB clearly
is the best performing algorithm on the whole, followed by
DE, which powers DEHB under the hood. Such rankings
illustrate DEHB’s robustness across different search spaces,
including high dimensions, discrete or mixed type spaces,
and even problems where response signals from lower fidelity
subspaces may not be too informative. It must be noted that
for all the different problems tested for with the collection
of benchmarks, DEHB is never consistently outperformed by
any multi-fidelity or full-budget algorithm.

It must be noted that based on the average rank plot in
Figure 13, BOHB appears to be better than DEHB in the
early middle section of the optimization. The underlying
model-based search in BOHB can possibly explain this phe-
nomenon. Though DEHB’s underlying DE requires more
function evaluations to explore the space, it remains com-
petitive with BOHB and the latter is not significantly bet-
ter across any of the used benchmarks. Moreover, as Fig-
ure 13 indicates, BOHB’s relative performance worsens while
DEHB continues to remain better even in comparison to the
other full-budget black box optimizers such as DE, RE and
TPE. BOHB’s model-based search can again be attributed for
this phenomenon. Many of the benchmarks used are high-
dimensional and have mixed data types, which can affect
BOHB’s model certainty over the configuration space and re-
quire much more observations than DEHB requires. Over-
all, DEHB shows consistently good anytime performance
with strong final performance scores too. As detailed earlier,
DEHB’s efficiency, simplicity and its speed allow the good
use of available resources and make it a good practical and
reliable tool for HPO in practice.
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Figure 13: Comparison of GP-based multi-fidelity BO (Dragon-
fly), KDE based multi-fidelity BO (BOHB), DE based multi-fidelity
(DEHB) methods for some of the benchmarks, averaged over 32
runs of each algorithm.



RS HB BOHB TPE SMAC RE DE DEHB

Counting 9.8e-2± 6.1e-2± 2.1e-2± 8.1e-3± 1.1e-6 2.7e-2± 1.5e-2± 9.7e-4±
4 + 4 2.6e-2 1.9e-2 1.8e-2 4.8e-3 ± 3.9e-6 7.9e-3 6.6e-3 4.6e-4 (2)

Counting 1.9e-1± 1.5e-1± 3.9e-3± 7.6e-2± 2.1e-3 5.0e-2± 6.6e-2± 1.4e-2±
8 + 8 2.5e-2 2.5e-2 1.1e-3 3.1e-2 ± 2.3e-3 1.2e-2 1.5e-2 3.7e-3 (3)

Counting 2.8e-1± 2.4e-1± 9.6e-2± 1.7e-1± 1.6e-1± 9.2e-2± 1.4e-1± 6.5e-2
16 + 16 2.2e-2 2.2e-2 8.3e-3 2.8e-2 1.6e-2 1.5e-2 1.7e-2 ± 6.3e-3
Counting 3.5e-1± 3.2e-1± 2.4e-1± 2.6e-1± 3.6e-1± 1.6e-1± 2.2e-1± 1.4e-1
32 + 32 1.4e-2 1.8e-2 1.3e-2 1.9e-2 2.e-2 2.e-2 1.8e-2 ± 1.1e-2
OpenML 3.8e-3± 3.1e-3± 1.8e-3± 1.9e-3± 2.8e-3± 2.e-3± 1.9e-3± 1.1e-3
adult 4.5e-4 5.8e-4 6.1e-4 5.e-4 8.3e-4 6.3e-4 3.4e-4 ± 2.0e-4

OpenML 4.1e-3± 3.6e-3± 2.5e-3± 2.3e-3± 3.e-3± 2.1e-3± 2.0e-3± 1.8e-3
higgs 7.3e-4 5.5e-4 5.8e-4 7.4e-4 1.3e-3 9.4e-4 4.6e-4 ± 2.1e-4

OpenML 3.8e-3± 2.9e-3± 2.e-3± 7.4e-4± 1.0e-3± 6.2e-4± 8.2e-4± 5.5e-4
letter 1.1e-3 7.5e-4 1.5e-3 2.8e-4 9.9e-4 3.3e-4 1.5e-4 ± 3.4e-4

OpenML 1.8e-3± 1.6e-3± 1.3e-3± 9.4e-4± 1.1e-3± 9.2e-4± 5.3e-5 9.5e-4±
mnist 3.1e-4 2.0e-4 4.3e-4 5.2e-5 4.6e-4 7.1e-5 ± 7.2e-5 7.6e-5 (4)

OpenML 3.2e-3± 2.8e-3± 1.7e-3± 1.4e-3± 1.5e-3± 1.0e-3± 8.1e-4± 7.9e-4
optdigits 5.4e-4 5.3e-4 8.1e-4 4.3e-4 8.8e-4 5.5e-4 3.8e-4 ± 2.5e-4
OpenML 1.1e-3± 7.6e-4± 3.e-4± 4.4e-4± 2.1e-4± 4.e-4± 4.4e-4± 1.9e-4
poker 3.1e-4 1.8e-4 1.6e-4 1.1e-4 1.7e-4 1.9e-4 1.6e-4 ± 5.4e-5
BNN 4.7± 4.3± 3.8± 4.0± 4.4± 6.6± 5.0± 4.0±
Boston 9.4e-1 7.e-1 3.1e-1 4.2e-1 5.5e-1 9.5e+0 2.8e+0 4.9e-1 (2)
BNN 4.0± 3.7± 3.3± 3.4± 3.3± 5.1± 4.9± 3.5±
Protein 9.6e-1 5.2e-1 1.8e-1 2.7e-1 2.2e-1 5.3e+0 2.6e+0 3.7e-1 (4)
Cartpole 4.7e+2± 3.9e+2± 1.9e+2± 2.9e+2± 1.8e+2 3.8e+2± 4.9e+2± 2.e+2±

(RL) 1.4e+2 1.1e+2 4.4e+1 6.7e+1 ± 1.9e+1 1.3e+2 1.1e+2 7.3e+1 (3)
NAS101 2.9e-3± 3.e-3± 2.6e-3± 2.8e-3± 4.0e-3± 2.3e-3± 1.2e-3 2.2e-3±
CifarA 7.6e-4 6.0e-4 1.2e-3 1.1e-3 1.5e-3 1.2e-3 ± 1.1e-3 1.4e-3 (2)
NAS101 3.1e-3± 3.2e-3± 2.8e-3± 3.e-3± 2.9e-3± 2.4e-3 2.6e-3± 2.6e-3±
CifarB 5.3e-4 3.8e-4 7.4e-4 5.8e-4 1.4e-3 ± 1.0e-3 6.9e-4 1.1e-3 (2)
NAS101 3.2e-3± 3.1e-3± 2.6e-3± 2.7e-3± 6.4e-3± 2.3e-3± 1.7e-3 2.0e-3±
CifarC 3.5e-4 5.4e-4 7.6e-4 8.3e-4 1.3e-3 1.4e-3 ± 1.1e-3 1.2e-3 (2)
NAS1s1 1.6e-3± 1.5e-3± 1.7e-3± 1.3e-3± 2.7e-3± 1.1e-3± 9.4e-4 1.4e-3±
SS1 8.6e-4 9.6e-4 1.1e-3 1.1e-3 9.9e-4 1.1e-3 ± 9.1e-4 7.8e-4 (4)

NAS1s1 1.3e-3± 9.8e-4± 8.6e-4± 8.2e-4± 7.2e-4± 3.e-4± 2.3e-4 6.4e-4±
SS2 6.4e-4 4.8e-4 5.0e-4 7.e-4 4.3e-4 3.e-4 ± 2.5e-4 5.5e-4 (3)

NAS1s1 3.5e-3± 3.4e-3± 3.9e-3± 3.5e-3± 3.8e-3± 2.8e-3± 2.3e-3 2.6e-3±
SS3 9.3e-4 9.2e-4 7.2e-4 8.9e-4 8.6e-4 1.3e-3 ± 1.0e-3 1.1e-3 (2)

NAS201 2.7e-3± 2.3e-3± 2.0e-3± 7.2e-4± 4.1e-4± 1.0e-4± 2.3e-4± 7.8e-5
Cifar10 1.1e-3 7.6e-4 1.4e-3 1.3e-3 5.8e-4 5.6e-4 1.2e-3 ± 1.7e-4
NAS201 8.1e-3± 6.1e-3± 5.7e-3± 1.9e-3± 1.3e-3± 8.e-5± 0.e+0 1.3e-4±
Cifar100 3.5e-3 3.2e-3 4.0e-3 2.8e-3 2.3e-3 2.4e-4 ± 0.e+0 2.9e-4 (3)
NAS201 9.3e-3± 7.9e-3± 7.3e-3± 4.8e-3± 5.4e-3± 2.0e-3 2.3e-3± 2.2e-3±
ImageNet 3.6e-3 3.9e-3 4.1e-3 3.7e-3 3.6e-3 ± 1.4e-3 8.8e-4 1.6e-3 (2)
NASHPO 7.4e-3± 4.2e-3± 2.9e-4± -4.7e-4± 3.9e-4± -1.1e-3± -1.1e-3 -1.0e-3±
Protein 4.5e-3 2.7e-3 1.1e-3 1.9e-3 2.5e-3 3.5e-4 ± 3.1e-4 5.9e-4 (3)
NASHPO 2.8e-5± 2.9e-6± -1.0e-5± -3.1e-5± -1.9e-5± -3.5e-5± -4.3e-5 -2.3e-5±
Slice 3.6e-5 2.2e-5 2.7e-5 1.6e-5 1.9e-5 1.2e-5 ± 7.8e-6 1.6e-5 (4)

NASHPO 6.8e-6± 2.5e-6± -2.5e-6± -4.8e-6± -6.e-6± -6.7e-6± -7.e-6 -6.e-6±
Naval 6.2e-6 4.3e-6 2.8e-6 3.3e-6 2.6e-6 1.0e-6 ± 8.6e-7 2.3e-6 (4)

NASHPO -6.6e-4± -1.0e-3± -3.4e-3 -2.3e-3± -2.6e-3± -2.9e-3± -3.2e-3± -2.4e-3±
Parkinsons 1.1e-3 1.0e-3 ± 7.4e-4 1.1e-3 8.4e-4 7.5e-4 6.8e-4 8.8e-4 (5)

Avg. rank 7.46 6.54 4.42 4.35 4.73 3.16 2.96 2.39

Table 1: Final mean validation regret ± standard deviation for 50 runs all algorithms tested for all benchmarks. Performance scores for
DEHB is accompanied with its (rank) among other algorithms. The last row shows the average relative rank of each algorithm based on their
final performance on each benchmark.

E Ablation Studies

DEHB was designed as an easy-to-use tool for HPO and
NAS. This necessitated that DEHB contains as few hyperpa-
rameters as possible that require tuning or that which makes
DEHB sensitive to them. Given that the HB parameters in-
herent to DEHB are contingent on the problem being solved,
that leaves only the DE components’ hyperparameters to be
set adequately. We perform ablation of the mutation and
crossover rates to observe how it fairs for DEHB’s design for
the suite of benchmarks we experiment on.

E.1 Varying F
The crossover probability p was fixed at 0.5, while mutation
factor F was varied with the values 0.1, 0.3, 0.5, 0.7, 0.9. The
studies are carried out on NAS-Bench-101, OpenML Surro-
gate and the toy Stochastic Counting Ones benchmarks. The
results are reported in Figure 14.

We observe that a low F of 0.1 allows more exploitative
power to the DE search for a well correlated benchmark such
as Counting Ones, while F = 0.9 performs the worst. How-
ever, for the other benchmarks F = 0.1 performs the worst
with all other F performing similarly. As a result we choose
the conservative option of F = 0.5 to ensure one general set-



ting performs acceptably across all benchmarks.

E.2 Varying CR
The scaling factor F was fixed at 0.5, while crossover factor p
was varied with the values 0.1, 0.3, 0.5, 0.7, 0.9. The studies
were carried out on NAS-Bench-101, OpenML Surrogate and
the toy Stochastic Counting Ones benchmarks. The results
are reported in Figure 15.

The lower the p value, the less likely are the random mu-
tant traits to be incorporated into the population. For Count-
ing Ones, we observe that a high p slows down convergence,
whereas low p speeds up convergence. However, for the oth-
ers, p = 0.5 is consistently the best performer. Hence, we
chose p = 0.5 for the design of DEHB.
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Figure 14: Ablation study for mutation factor F for DEHB, with crossover probability fixed at p = 0.5
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Figure 15: Ablation study for crossover probability p for DEHB, with mutation factor fixed at F = 0.5
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