DACBench: A Benchmark Library for Dynamic Algorithm Configuration

Theresa Eimer!' , André Biedenkapp?, Maximilian Reimer', Steven Adriaensen?,
Frank Hutter>® and Marius Lindauer!
nformation Processing Institute (tnt), Leibniz University Hannover, Germany
?Department of Computer Science, University of Freiburg, Germany
3Bosch Center for Artificial Intelligence, Renningen, Germany
{eimer, reimerm, lindauer } @tnt.uni-hannover.de, {biedenka, adriaens, fh} @cs.uni-freiburg.de

Abstract

Dynamic Algorithm Configuration (DAC) aims to
dynamically control a target algorithm’s hyperpa-
rameters in order to improve its performance. Sev-
eral theoretical and empirical results have demon-
strated the benefits of dynamically controlling hy-
perparameters in domains like evolutionary com-
putation, Al Planning or deep learning. Replicat-
ing these results, as well as studying new methods
for DAC, however, is difficult since existing bench-
marks are often specialized and incompatible with
the same interfaces. To facilitate benchmarking and
thus research on DAC, we propose DACBench, a
benchmark library that seeks to collect and stan-
dardize existing DAC benchmarks from different
Al domains, as well as provide a template for new
ones. For the design of DACBench, we focused on
important desiderata, such as (i) flexibility, (ii) re-
producibility, (iii) extensibility and (iv) automatic
documentation and visualization. To show the po-
tential, broad applicability and challenges of DAC,
we explore how a set of six initial benchmarks com-
pare in several dimensions of difficulty.

1 Introduction

In the last years, algorithm configuration [Hutter et al., 2009;
Ansoétegui et al., 2009; Hutter et al., 2011; Lopez-Ibafiez
et al., 2016] and in particular automated machine learn-
ing [Shahriari ef al., 2016; Hutter et al., 2019] offered auto-
matic methods optimizing the settings of hyperparameters to
improve the performance of algorithms. However, practition-
ers of different communities have already known for a while
that static hyperparameter settings do not necessarily yield
optimal performance compared to dynamic hyperparameter
policies [Senior ef al., 2013]. One way of formalizing dy-
namic adaptations of hyperparameters is dynamic algorithm
configuration [DAC; Biedenkapp et al., 2020]. DAC showed
its promise by outperforming other algorithm configuration
approaches, e.g., choosing variants of CMA-ES [Vermetten
et al., 2019] or dynamically adapting its step-size [Shala et
al., 2020], dynamically switching between heuristics in Al
planning [Speck et al., 2021], or learning learning rate sched-
ules for computer vision [Daniel et al., 2016].

These results, however, also revealed a challenge for the
further development of DAC. Compared to static algorithm
configuration [Hutter et al., 2009; Ansétegui et al., 2009;
Hutter et al., 2011; Lopez-Ibanez et al., 2016], applying DAC
also requires (i) the definition of a configuration space to
search in, (ii) instances to optimize on and (iii) a reward signal
defining the quality of hyperparameter settings. However, the
optimizer and the algorithm to be optimized have to be inte-
grated much closer in DAC. The current state of the algorithm
and the reward function, for example, need to be queried by
the optimizer on a regular basis and the applied hyperparame-
ter changes need to be communicated to the algorithm. There-
fore, creating reliable, reusable and easy-to-use DAC bench-
marks is often fairly hard with no existing standard thus far.

This disparity between benchmarks in addition to the dif-
ficulty in creating new ones presents a barrier of entry to the
field. Researchers not well versed in both target domain and
DAC may not be able to reproduce experiments or understand
the way benchmarks are modelled. This makes it hard for
pure domain experts to create a DAC benchmark for their do-
main, severely limiting the number of future benchmarks we
can expect to see. A lack of standardized benchmarks, in turn,
will slow the progress of DAC going forward as there is no re-
liable way to compare methods on a diverse set of problems.

To close this gap, we propose DACBench, a suite of stan-
dardized benchmarks'. On one hand, we integrate a diverse
set of Al algorithms from different domains, such as Al plan-
ning, deep learning and evolutionary computation. On the
other hand, we ensure that all benchmarks can be used with a
unified easy-to-use interface, that allows the application of a
multitude of different DAC approaches as well as the simple
addition of new benchmarks. This paper details the concepts
and ideas of DACBench, as well as insights from the bench-
marks themselves. Specifically, our contributions are:

1. We propose DACBench, a DAC benchmark suite with a

standardized interface and tools to ensure comparability
and reproducibility of results;

2. We discuss desiderata of creating DAC benchmarks and
how we took them into account in DACBench;

3. We propose a diverse set of DAC benchmarks from dif-
ferent domains showing the breadth of DAC’s potential,

The project repository can be found at

https://github.com/automl/DACBench



allowing future research to make strong claims with new
DAC methods;

4. We show that our DAC benchmarks cover different chal-
lenges in DAC application and research.

With this, we strive to lower the barrier of entrance into
DAC research and enable research that matters.

2 Related Work

DAC is a general way to formulate the problem of optimiz-
ing the performance of an algorithm by dynamically adapt-
ing its hyperparameters, subsuming both algorithm configu-
ration [AC; Hutter et al., 2017] and per-instance algorithm
configuration [PIAC; e.g. Ansoétegui et al., 2016]. While
AC methods can achieve significant improvements over de-
fault configurations PIAC algorithms have demonstrated that
searching for a configuration per instance can further im-
prove performance. In a similar way, DAC can navigate the
over time changing search landscape in addition to instance-
specific variations.

Theoretically, this has been shown to be optimal for the
(14 (A, A)) genetic algorithm [Doerr and Doerr, 2018], and
to enable exponential speedups compared to AC on a family
of Al Planning problems [Speck et al., 2021].

Empirically, we have seen dynamic hyperparameter sched-
ules outperform static settings in fields like Evolutionary
Computation [Shala er al., 2020], Al Planning [Speck et al.,
2021] and Deep Learning [Daniel et al., 2016]. In addition,
hyperheuristics [Ochoa et al., 2012] can also be seen as a
form of DAC. In this field, it has been shown that dynamic
heuristic selection outperforms static approaches on combi-
natorial optimization problems like Knapsack or Max-Cut
[Almutairi et al., 2016].

In the context of machine learning, dynamically adjust-
ing an algorithm’s hyperparameters can be seen as a form
of learning to learn where the goal is to learn algorithms or
algorithm components like loss functions [Houthooft et al.,
2018], exploration strategies [Gupta et al., 2018] or com-
pletely new algorithms [Andrychowicz et al., 2016; Chen et
al., 2017]. While DAC does not attempt to replace algorithm
components with learned ones, the hyperparameter values of
an algorithm are often instrumental in guiding its progress.
In some cases they become part of the algorithm. Dynamic
step size adaption in ES using heuristics, for example, is very
common, but can be replaced and outperformed by more spe-
cific DAC hyperparameter policies [Shala et al., 2020].

In other meta-algorithmic areas, reliable and well engi-
neered benchmark libraries also facilitated research progress,
incl. ASLib [Bischl et al., 2016], ACLib [Hutter et al.,
2014], tabular NAS benchmarks [e.g., Ying et al., 2019] and
HPOIib [Eggensperger et al., 2013]. In particular, DACBench
is strongly inspired by HPOIib and OpenAl gym [Brockman
et al., 2016] which also provide a unified interface to bench-
marks. Although the hyflex framework [Ochoa et al., 2012]
addresses a similar meta-algorithmic problem, in DACBench,
we can model more complex problems (i.e., continuous and
mixed spaces instead of only categoricals), consider state fea-
tures of algorithms and cover more Al domains (not only
combinatorial problems).

Furthermore DACBench is designed to build upon exist-
ing benchmark libraries in target domains by integrating their
algorithm implementations. This includes well-established
benchmarks like COCO [Hansen et al., 2020] or IOHProfiler
[Doerr et al., 2018].

3 Formal Background on DAC

DAC aims at improving a target algorithm’s performance
through dynamic control of its hyperparameter settings
A € A. To this end, a DAC policy 7 queries state informa-
tion s; € S of the target algorithm at each time point ¢ to set
a hyperparameter configuration: 7 : S — A. Given a starting
state s¢ of the target algorithm, a maximal number of solving
steps T, a probability distribution p over a space of problem
instances ¢ € Z, and a reward function r; : S x A — R de-
pending on the instance ¢ at hand, the objective is to find a
policy maximizing the total return:

T
/p(i) > rilse,m(se)) di (1)
z t=0

Following Biedenkapp et al. [2020], one way of modelling
this task is as a contextual MDP M7 = {M,};.z [Hallak et
al., 2015], consisting of |Z| MDPs. Each M, represents one
target problem instance ¢ with M; = (S, A, 7;, r;). This for-
mulation assumes that all M; share a common state space S,
describing all possible algorithm states, as well as a single ac-
tion space A choosing from all possible hyperparameter con-
figurations A. The transition function 7; : S x A — S, cor-
responding to algorithm behaviour, and reward function r;,
however, vary between instances.

This formulation allows to apply different configuration
approaches on the same problem setting, e.g., algorithm con-
figuration by ignoring all state information (7 : § — A),
per-instance algorithm configuration by only taking the in-
stance into account (7 : Z — A) or a full DAC agent
(m: 8 x T — A) on the contextual MDP (information about
1 € T is typically directly reflected in s € S). In view of how
close this DAC formulation is to reinforcement learning (RL),
in the remainder of the paper we will continue to refer to hy-
perparameter settings as actions and hyperparameter sched-
ules as policies. Nevertheless, we consider DAC as a general
problem that can be solved in different ways, incl. supervised
learning, reinforcement learning or even hand-designed poli-
cies, e.g., cosine annealing for learning rate adaption in deep
learning [Loshchilov and Hutter, 2017] or CSA for CMA-
ES [Chotard et al., 2012].

4 DACBench

With DACBench, we strive for an easy-to-use, standardized
and reproducible benchmark library that allows evaluating
DAC on several, diverse benchmarks. To this end, we will
first describe which components are needed to define a DAC
benchmark, see Figure 1, and then explain how we can make
use of it to ensure our design objectives.

4.1 Components of a DAC Benchmark

Inspired by the flexibility that the modelling as a cMDP al-
lows and the success of OpenAI’s gym environments, each
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Figure 1: Interaction between optimizer, policy and all components of a DAC benchmark; latter in grey boxes.

DACBench benchmark is modelled along these lines, with
the following benchmark-specific design decisions.

Action Space A describes ways of modifying the current
configuration. In the simplest case, the action space directly
corresponds to the hyperparameter space, incl. all hyperpa-
rameter names and the corresponding ranges.

State Space S describes available information about the
target algorithm state. This can be enriched by context in-
formation about the instance at hand. We recommend that
it is (i) cheap-to-compute information that is (ii) available at
each step and (iii) measures the progress of the algorithm.

Target Algorithm with Transition Dynamics 7; implic-
itly defines which states s, are observed after hyperparam-
eter configuration ), is chosen in state s;. It is important to
fix the target algorithm implementation (and all its dependen-
cies) to ensure that this is reproducible. An implicit design
decision of a benchmark here is how long an algorithm should
run before the next step description is returned.

Reward Function r; provides a scalar signal of how well
the algorithm can solve a given instance. It is an analogue to
the cost function in AC and PIAC and should be the optimiza-
tion target, e.g., prediction error, runtime or solution quality.

Instance Set Z defines variants of a given problem that has
to be solved s.t. the learned policy is able to generalize to new,
but similar instances.” To assess generalization performance,
a training and test set of instances is required. In addition,
instances can be described by instance features [Bischl et al.,
2016] which facilitates learning of per-instance policies.

This fine granular view on benchmarks allows us on one
hand to create a multitude of different benchmarks, poten-
tially with different characteristics. On the other hand, a
benchmark in DACBench is a specific instantiated combina-
tion of these components s.t. DACBench contributes to re-
producible results.

4.2 Practical Considerations & Desiderata

DACBench provides a framework to implement the design
decisions above with a focus on accessibility, reproducibility
and supporting further research on DAC.

Accessibility So far, applying a new DAC optimizer to a
target problem domain requires domain knowledge to be able
to interface with a potential algorithm. Comparing optimizers

2For simplicity, we only discuss the case of a set of training in-
stances. In general, DACBench also supports instance generators s.t.
the set of instances does not have to be fixed in advance.

across multiple benchmarks of varying characteristics often
requires re-implementing or adapting parts of the optimizers
to fit the different interfaces, hurting the consistency of the
comparison and taking a lot of time and effort.

Similarly, developing and providing new and interesting
benchmarks is challenging as, without a standardized inter-
face, there is little guidance on how to do so. Thus, domain
experts wanting to provide a DAC benchmark of a target algo-
rithm often construct their own interface, which can be time-
consuming even with a background in MDPs.

Providing a standardized interface would alleviate the is-
sues and facilitate moving DAC as a field forward. Therefore,
DACBench provides a common interface for benchmarks,
based on OpenAl’s gym API [Brockman et al., 2016], that
makes interaction with DAC optimizers as simple as possi-
ble. This interface is lightweight and intuitive to implement
for experts from different domains, encouraging collabora-
tion in the creation of new benchmarks and optimizers. It
also allows domain experts to modify existing benchmarks
with little effort and minimal knowledge of the base code to
create new and interesting variations of known benchmarks,
see Appendix C.

Reproducibility As discussed before, adapting an algo-
rithm for DAC can be challenging as there are many design
decisions involved. On one hand, to allow studies of new
DAC characteristics, we believe it is important to give re-
searchers the flexibility to adjust these components. There-
fore, we do not want to propose a framework that fixes too
many decision points as it could restrict important future re-
search. On the other hand, we believe there is a need for stan-
dardized benchmarks to facilitate comparing different meth-
ods as well as reproducing research results. For this purpose,
all design decisions of the original experiments should be re-
producible. To this end, DACBench includes a mechanism to
customize as many of these design decisions as possible, but
also to record them such that other researchers can reproduce
the experiments (for more details, see Appendix A).

Facilitating Further Research Lastly, DACBench sup-
ports researchers by providing resources needed to work on
DAC problems as well as thorough documentation of the de-
sign decisions of each benchmark. As existing benchmarks
are often not documented very well, working with them re-
quires thorough study of the code base. Instead, DACBench
provides all important details about individual benchmarks in
a concise manner through comprehensive documentation.

Furthermore, DACBench provides quality of life compo-
nents like structured logging and visualization that make
working with DACBench seamless. The logging system gives



users the option to save a variety of details like the policies
or state information for later analysis. Further, the built-in
visualization tools make evaluating experiments easy (exam-
ples include Figures 3, 4 and 7) and can directly use the data
provided by the logging system.

These considerations contribute to driving open research
on DAC forward by ensuring easy reproducibility of experi-
ments, usability for a diverse audience and sharing of experi-
ment configurations. By adopting a simple yet modular inter-
face, we improve general accessibility to the field as well as
the ability to continuously evolve DAC benchmarks.

4.3 Six Initial Diverse DAC Benchmarks

We propose six initial benchmarks for DACBench from dif-
ferent domains and with different challenges (for in-depth de-
scriptions, see Appendix B). We believe these present a ver-
satile set of problems both for testing DAC methods across
diverse benchmarks and developing new approaches.

Sigmoid & Luby [Biedenkapp et al., 2020] are time se-
ries approximation tasks with no underlying target algorithm.
These artificial benchmarks run very quickly, their optimal
policies can be computed efficiently for all possible instances
(i.e. transformations of the functions themselves) and it is
easy to generate instance sets for a wide range of difficul-
ties. Therefore, Sigmoid and Luby are ideal for DAC devel-
opers, e.g. to verify that agents can learn the optimal policy
or slowly ramp up the instance heterogeneity in order to test
its generalization capabilities.

FastDownward [Helmert, 2006] is a state-of-the-art Al
Planner, which gives rise to a more complex benchmark. The
task here is to select the search heuristic at each step on
a specific problem family with two complementary heuris-
tics. This can be considered one of the easier benchmarks
even though significant performance gains on competition
domains are possible with four commonly used heuristics
[Speck et al., 2021]. The basic instance set we provide in-
cludes optimal policy information as an upper performance
bound.

CMA-ES [Hansen et al., 2003] is an evolutionary strat-
egy, where the DAC task is to adapt the algorithm’s steps
size [Shala et al., 2020] when solving BBOB functions. How-
ever, finding a good solution in this continuous space is po-
tentially harder than the discrete heuristic selection in Fast-
Downward. While optimal policies are unknown for this
benchmark, there is a strong established dynamic baseline in
CSA [Chotard et al., 2012].

ModEA includes an example of dynamic algorithm selec-
tion for variants of CMA-ES on BBOB functions [ Vermetten
et al., 2019]. In contrast to the CMA-ES benchmark, a com-
bination of 11 EA elements with two to three options each
are chosen in each step; this combination makes up the final
algorithm. This multi-dimensional, large action space makes
the problem very complex. So we expect this to be a hard
benchmark, possibly too hard for current DAC approaches to
efficiently determine an effective DAC policy.

SGD-DL adapts the learning rate of a small neural net-
work learning a simple image classification task [Daniel et
al., 2016]. The small network size allows for efficient de-
velopment and benchmarking of new DAC approaches. By
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Figure 2: Ranked comparison of difficulty dimensions in
DACBench benchmarks. Lower values correspond to easier char-
acteristics.

varying the instance (dataset-seed pairs) and the network ar-
chitecture, this benchmark nevertheless opens up ample pos-
sibility to grow ever harder as DAC advances.

5 Empirical Insights Gained from DACBench

In order to study our benchmarks, we discuss dimensions of
difficulty which are relevant to the DAC setting. To provide
insights into how our benchmarks behave in these dimen-
sions, we use static policies, known dynamic baselines and
random dynamic policies to explore their unique challenges.

5.1 Setup

To show how our benchmarks behave in practice, we mainly
use the static and random policies built into DACBench and,
where possible, make use of optimal policies. All of them
were run for 10 seeds with at most 1000 steps on each in-
stance. For benchmarks with a discrete action space, static
policies cover all the actions. The two benchmarks with con-
tinuous action spaces, CMA-ES and SGD-DL were run with
50 static actions each, distributed uniformly over the action
space. For details on the hardware used, refer to Appendix D.

5.2 Coverage of Difficulty Dimensions

Similar to Biedenkapp et al. [2020], we identified six core
challenges of learning dynamic configuration policies to char-
acterize our benchmarks. For comparison’s sake, we define a
scale for each attribute and measure these on our benchmarks.
These dimensions of difficulty are: (i) State and (ii) action
space size increase the difficulty of the problem by varying
information content, requiring the agent to learn what state
information is relevant and which regions in the action space
are useful. (iii) Policy heterogenity quantifies how successful
different policies are across all instances. (iv) Reward qual-
ity refers to the information content of the given reward sig-
nal. (v) Noise can disturb the training process through noisy
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Figure 4: Comparison of average performance of static FastDown-
ward policies with 95% confidence interval.

transitions or rewards. Lastly, (vi) dynamicity shows how fre-
quently the action should be changed, i.e. how complex well-
performing policies need to be. See Appendix E for details.

Figure 2 shows how the benchmarks compare with respect
to these dimensions of difficulty. While the reward quality is
not fully covered, we cover all other dimensions well, with
at least a very, moderately and not especially difficult bench-
mark in each. Additionally, all DACBench benchmarks show
a different profile. The data shows that Luby could be consid-
ered the easiest of the six, with little noise or policy hetero-
geneity and a relatively low dynamicity score, requiring only
infrequent action changes. SGD-DL’s footprint looks simi-
lar, though its continuous action space makes for a difficulty
spike in that category. While Sigmoid’s reward function ob-
scures quite a bit of information, it is not very difficult in the
other dimensions. FastDownward on the other hand leads the
dynamicity dimension by far, showing a need for more ac-
tive control. It is also fairly challenging with regard to noise
and policy heterogeneity. CMA-ES is even more difficult in
these, while also having the largest state space. A more in-
formative reward and lower dynamicity contrast it and other
benchmarks. ModEA’s difficulty, on the other hand, seems
similar except for the challenge of a continuous state space.

While this shows that our benchmark set covers all of our
dimensions of difficulty with the exception of reward qual-
ity fairly well, we will continue to explore the dimensions of
noise, policy heterogeneity and dynamicity in greater detail
in order to give a more detailed impression of how these di-
mensions are expressed.

5.3 Degree of Randomness

To show how randomness is expressed in our benchmarks, we
investigate its effects on FastDownward and ModEA.

We quantified randomness by using the standard devia-
tion of the cumulative reward between different seeds for the
same actions, each repeated 10 times. ModEA was one of
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Figure 5: Policy evaluation of CMA benchmark on Schaffers (left)
and Ellipsoid (right) functions (with 3 best and worst static policies).
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Figure 6: Algorithm footprint t-SNE plot of CMA-ES instances
showing where CSA outperforms all static policies.

the benchmarks that had a very high relative standard devi-
ation and thus a very high noise score, see Figure 3. While
static policies from different parts of the action space vary
in performance, their confidence intervals grow much larger
the worse they perform. This is to be expected, as policies
with a high reward have found EA components that quickly
find the optimal solution of the black-box function at hand.
If the resulting EA cannot find a solution quickly, the indi-
viduals in each generation will have very different proposed
solutions, thus resulting in unstable performance. So even
though ModEA contains quite a bit of noise, the noise is het-
eroscedastic, i.e., it is not evenly distributed across the policy
space, providing an additional challenge.

FastDownward, on the other hand, also has a high rating
in the noise category, but the way its noise is distributed is
quite different, see Figure 4. W.r.t. the average performance
of both static policies, the 95% confidence interval is up to
twice as large as the performance value itself. In contrast to
ModEA, the noise is large but likely homoscedastic.

5.4 Effect of Instances

To investigate the effect instances have on our benchmarks,
we examine CMA-ES, which showed the highest policy het-
erogeneity above, and Sigmoid, for which we can compute
the optimal policy. CMA-ES and ModEA both operate on
instance sets comprised of different function classes between
which we can clearly see very different behaviour. The Schaf-
fers function (see Figure 5 left) illustrates that the hand-
designed CSA is indeed a good dynamic policy; it outper-
forms all other static and random policies.

In contrast, CSA performs much worse on the Ellipsoid
function (Figure 5 right). Using the probability estimation
proposed by Shala et al. [2020] based on the Wilcoxon rank
sum test, CSA’s probability of outperforming any given static
policy is 74.6% overall; also shown on a per-instance level
in the algorithm footprint [Smith-Miles et al., 2014] in Fig-
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reward here is the validation loss (negative log-likelihood).

ure 6. While this shows that CSA’s dynamic control policy is
preferred on most of CMA-ES instance space, there are also
regions that require a different approach, underlining the im-
portance of instance dependent methods.

On the Sigmoid benchmark we see that performance dif-
ferences between instances persist even for the optimal policy
(see Figure 7 left). While it performs very well on some in-
stances, this is far from the case for all of them. Indeed, while
it is possible to gain the best possible reward of 10 on some
instances, there is an almost even distribution of rewards be-
tween the maximum and minimum cumulative reward.

Overall, different instances can have a significant influence
on the overall performance, both in terms of which policies
are successful on them and how well an agent can do.

5.5 Is Dynamic Better than Static?

Even though we have empirical evidence of DAC agents sur-
passing static baselines for all of our benchmarks [Daniel et
al., 2016; Vermetten et al., 2019; Biedenkapp et al., 2020;
Shala et al., 2020; Speck et al., 2021], we analyse and com-
pare the performance of dynamic and static policies on our
benchmarks. This way we can estimate the difficulty both in
finding a good dynamic policy that surpasses a simple ran-
dom one but also the difficulty of outperforming the static
policies. Insights into the relationship between static and dy-
namic policies can highlight characteristics of a benchmark,
give upper and lower performance bounds and show the effect
size we can expect from DAC approaches in the future.

Our evaluation clearly shows that the benchmarks have a
very different sensitivity to dynamic policies. In Luby (Fig-
ure 7 middle) we can see that the most common elements of
the Luby sequence, elements one and two, outperform the dy-
namic random policy. As 50% of the Luby sequence consist
of the first element and 25% of the second, this is the expected
behaviour. Therefore it also makes sense that the optimal pol-
icy outperforms all other policies. The random policy does
not perform very well, showing that there is a lot of room to
improve over it and subsequently over the static policies.

Similarly, the random policy of SGD-DL outperforms
some of the worst static policies on average, but does very
poorly compared to them on many occasions (see Figure 7
right). Improving over the best static policies here will there-
fore be much harder for a DAC agent. This is also an exam-
ple of the fact that dynamically adapting hyperparameters can
outperform static settings, as Daniel et al. [2016] showed for
this setting, but the region of well-performing dynamic poli-

cies seem to be much smaller than for Luby above. This is
the reason for the benchmark’s low dynamicity rating. Unlike
e.g. FastDownward, which favors frequent action changes re-
gardless of their quality, SGD-DL requires a more subtle ap-
proach with more consistency and carefully selected actions.

Therefore, we believe dynamicity will play a large role
in how DAC methods should approach benchmarks. While
choosing a new action each step for SGD-DL can of course
be learned successfully over time, it is a much harder task
than Luby. Methods keeping actions for a number of steps at
a time may have better success here [Vermetten et al., 2019].

6 Conclusion

We propose DACBench, a standardized benchmark suite for
dynamic algorithm configuration (DAC). With it, we pro-
vide a framework to configure DAC benchmarks that both
enables reproducibility and easy modifications, ensuring that
DACBench can help evolve DAC benchmarks further. For
example, we plan to extend the FastDownward benchmark
beyond single domains and include existing instance features
from e.g. Exploratory Landscape Analysis (ELA) for CMA-
ES and ModEA. Furthermore, DACBench is easily extend-
able and we will add new benchmarks, developed by us and
the community. As an incentive for researchers to tackle
some of the most important difficulties in solving DAC, we
provide challenges for several dimensions of hardness. In or-
der to assist in developing these new approaches, we also in-
clude tools for tracking important metrics and visualization,
making DACBench very easy to use without knowledge of
the target domains. Overall, we believe DACBench will make
DAC more accessible to interested researchers, make exist-
ing DAC approaches more easily comparable and provide a
direction for research into new methods. For future work, we
plan to build surrogate benchmarks, similar to Eggensperger
et al. [2018] for AC and Siems et al. [2020] for NAS, to en-
able DAC benchmarking with minimal computational over-
head and minimized CO4 footprint.
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A Structure & Implementation

Section 4.2 of the main paper discussed necessary design de-
cisions of a DAC benchmark. Here we describe in greater
detail how we chose to implement these ideas in practice.

Structure A crucial first decision that shaped the project
is the structure of DACBench. It is designed to enable re-
searchers to modify benchmarks more easily than currently
possible, but also to replicate diverse experiment settings
quickly. To accomplish this, we initialize the benchmark
environments with an experiment configuration that can be
stored and shared easily. Researchers can then load this con-
figuration and reproduce the experiment (see also Section C).
The benchmark configuration focuses on the specification op-
tions for mentioned in Section 4.1 of the main paper.

Algorithm Implementation We provide or specify the im-
plementation as well the definition of what constitutes a step
in this implementation in order to keep execution consistent.
As researchers may not focus on dynamically optimizing all
hyperparameters in parallel, the hyperparameters of the tar-
get algorithm that are not currently controlled can be modi-
fied prior and are kept fixed throughout a run. This can also
include utility parameters concerning the DAC interface, par-
allelization or using different execution modes of the target
algorithm.

Action Space Here the user can specify the search space for
the hyperparameters being controlled. It is important that a
step of the target-algorithm knows how to parse the parameter
values. Otherwise, the order of parameters might get mixed
and can lead to faulty behaviour.

State & Reward Researchers can use the default methods
for computing state or reward, but they can also provide cus-
tom ones that better fit their needs. DACBench can record
and reconstruct experiments with custom functions as long as
their implementation is shared with the experiment descrip-
tion.

Instance Sets Lastly, we provide instance sets for train-
ing and testing, either directly from published versions of
the benchmarks or sampled from distributions that are as
similar as possible. The training and tests sets are drawn
from the same distribution and contain 100 instances each.
We believe using fixed instance sets will make comparisons
between methods more consistent overall. Nevertheless, of
course different instance sets as well instances sampled on
the fly can be used to better explore how DAC methods be-
have in more general cases or specific regions of the instance
space. While we strive to record experiment specifications as
succinct as possible, the instances themselves will have to be
shared by the researchers working with them. Additionally
users can modify the experimental setup including the seed,
utilities for logging results and other relevant information like
additional functionality like added noise. These are often im-
portant for reproducibility and should be shared with other
researchers along with the benchmark specification itself.

Interface The interface we use for conducting these exper-
iments is heavily based on the OpenAl gym Brockman et al.
[2016] interface for its simplicity. Users only need to initial-
ize the environment and the call two methods, reset and step,
to interact with it. Furthermore, it provides an easy way to
specify action and state spaces. As this the most commonly
used RL interface, it will be very easy for RL experts to work
on DAC, making the field as a whole more approachable. To
ensure proper initialization using the configuration, environ-
ments in DACBench are created by benchmark classes, each
holding a default configuration that can be expanded upon
and saved. Additionally, we provide an evaluation method
for the whole benchmark suite, to make comparisons to base-
lines and other methods simple and consistent. We provide
data of standard baselines like random policies to standardize
these comparisons further. As a lot of the benchmark spec-
ification is done through the configuration, smaller changes
like the use of a different state function can be done by do-
main experts without modifying the environment code. We
believe this will benefit the field in the long run as experts
can improve benchmarks with little effort and without work-
ing through all of the existing code base. This will lead to
better benchmarks and thriving community around DAC.

Additional functionality We provide functionality to add
randomness to the benchmarks in the form of sampled in-
stances from custom distributions as well as noise on the re-
ward signal. We do not include these in the default bench-
marks to keep execution consistent but they provide impor-
tant insight in algorithm behaviour nonetheless. Moreover,
we include smaller benchmark suites that provide both re-
search direction and progress measure in a very efficient for-
mat. Lastly, DACBench also includes a flexible logging sys-
tem that allows the user to track performance data as well
as action trajectories, state features and execution times, all
sorted by environment step and instance used. To make anal-
ysis quick and convenient, we include methods for reloading
data as well as visualization tools.

B The Benchmarks in detail

Sigmoid The Sigmoid benchmark [Biedenkapp et al.,
2020] is parameterized by the number of functions to approx-
imate in parallel in the number of actions in each of these
dimensions (by default two dimensions with 10 and 5 actions
respectively ). An instance provides shift and slope for the
sigmoid function in each of these dimensions such that the
function value is:

1
1+ e—slopex(t—shift)

sigmoid(t) =

The reward in each dimension is then the distance from the
chosen action to the function value. The rewards from each
dimension are then multiplied to form the step reward. The
state is made up of the current step, previous state (including
all slopes and shifts for the current instance), action played,
reward and next state.

Luby This benchmark has the agent approximate the Luby
sequence of a given length. (Following Biedenkapp et al.



[2020] the length is pre-set to 64, resulting in 6 distinct ac-
tions). In the default setting, this is challenging enough, but
instances for Luby can be used to modify the start value of
the sequence or add an accumulating error signal. The re-
ward is 0 if the correct action is played, —1 otherwise. The
observations returned consist of the current timestep, previ-
ous state (including a history of actions for the last 5 steps),
action played, reward, next state, next goal and time cutoff.

FastDownward In FastDownward, the agent selects a
search heuristic for the next planning interval. The default ac-
tion space consist of two heuristics, although we also provide
a more complete version with four heuristics [Speck et al.,
2020]. The two heuristic version is an easier variation with
artificial instances that provides an easier optimization varia-
tion and it has been shown that an RL agent is capable of re-
covering the optimal policy on these [Speck et al., 2020]. The
reward is —1 per step, measuring the total number of steps.
The agent observes average, minimum and maximum values
as well as variance and open list entries for each heuristic.
We provide several target domains as instance sets with the
default being an artificially generated one.

CMA-ES Following Shala et al. [2020], an agent’s task
here is to adjust the step size for CMA-ES. Therefore the ac-
tions space covers possible step sizes between 0 and 10. The
reward is the best individual’s objective value, with the ob-
servations consisting of the current step size, cumulative path
length and population size as well as past objective values,
change in past objective values and past step sizes (for the
last 40 steps each). The instance set consists of 10 different
function classes of the BBOB benchmark.

ModEA Instead of controlling a single hyperparameter, in
ModEA the algorithm structure consisting of 11 different
components is adjusted [Vermetten et al., 2019]. There are
two choices for each of the first nine of these and three for
the other two. That results in 4, 608 possible actions in total.
The reward is, as in CMA-ES, the best individual’s fitness.
The state contains the generation size, current step size, re-
maining budget, function ID and instance ID. As the large
action space makes this benchmark hard, we used the same
instance set as for CMA-ES with only 10 different function
classes.

SGD-DL Here the agent controls a small neural network’s
learning rate Daniel et al. [2016]. Instances consist of a
dataset, seed and network. In the default setting, we con-
sider a single dataset (MNIST), 100 seeds each for training
and test, affecting weight initialization and the mini-batch or-
dering, and a single fully-connected feedforward network ar-
chitecture having two hidden layers with 16 units each. Per-
mitted actions lie between 0 and 10 with the learning rate
of the optimizer (Adam) being set to 10~9¢*°" The obser-
vations includes discounted average and uncertainty each of
the predictive change variance and loss variance, the current
learning rate, the training and validation loss.

C Modifiers of Benchmarks

DACBench not only allows to use existing benchmarks, but
also enables easy modification through the use of Benchmark

Algorithm

Settings
DACBench
Benchmark
Config File

Experiment
specification

Figure C1: Modification possibilities.

Configurations themselves (see Figure C1).

Modifications to the search space definition include
changes to the state and action spaces. Such changes can
immediately increase or lower the difficulty of learning suc-
cessful policies, e.g. through inclusion/exclusion of irrele-
vant action choices or use of additional (un-)informative state
features. Changing the algorithm settings include changes
to hyperparameters that are not dynamically changed or dif-
ferent resource allocation. Further benchmark customization
could allow control of multiple parameters (if not already en-
abled) or use of different problem instances. All included
benchmarks come with default configurations that allow for
reproduction of experiments from published versions of the
benchmarks.

D Experiment Hardware

All experiments with were conducted on a slurm CPU clus-
ter (see Table D1). The upper memory limit for these ex-
periments was 800MB per run, although not all benchmarks
require this much. As the DACBench runner was used for
all experiments, the provided Slurm scripts can reproduce the
results. Additionally, we provide them with the code.

Machineno. |  CPUmodel | cores | RAM
1 Xeon E5-2670 16 188 GB
2 Xeon E5-2680 v3 24 251
3-6 Xeon E5-2690 v2 20 125 GB
7-10 Xeon Gold 5120 28 187

Table D1: CPU cluster used for experiments.

E On Quantifying the Challenge Dimensions

We quantify all of our dimensions of difficulty for better com-
parability. This section details our criteria.

State & Action Spaces First, state and action space size are
deciding factors in MDPs. If state or action spaces are larger,
learning will take longer and the probability of finding a local
optimum instead of the best solution could increase for many
methods. Therefore a small set of possible states and actions
makes a benchmark easier to solve regardless of how complex
the underlying function is. To make comparison between the
other aspects as well as discrete and continuous action easy,
we divide the spaces into three categories. Category one con-
tains small discrete action spaces, we define this as below



100 actions. Large discrete spaces with up to 1000 actions
fall into category two. For state spaces, this means spaces of
up to 100 dimensions. Larger spaces fall into category three.
Continuous action spaces and action spaces with more than
1000 possible actions fall into the same category. This is of
course only a very rough categorization, but it should provide
an overview of how our benchmarks differ.

Reward Function In building DAC benchmarks, deciding
on areward signal is as important as it can be difficult. A good
reward signal would attribute every action a reward propor-
tional to its quality. This is hard to accomplish and sometimes
we have to default to a very sparse reward signal, requiring
the agent to learn to interpret the reward. A more informative
reward, what we call better reward quality, is therefore a de-
sirable quality from a learning perspective. For this category,
we define a scale from 1 and 5: 5 means no meaningful re-
ward at all, 4 is a combined reward only at the end with no
information (reward of 0 in each step) during the run. A score
of 3 is similar, a meaningful signal only at the end but with
step rewards that indicate if taking steps is desired or not (e.g.
now giving +1 or —1 per step). A reward of quality 2 pro-
vides the accumulated quality of the policy so far at each step,
but not how the last action contributed specifically. Lastly, if
the reward indicates directly how good of a choice the last ac-
tion specifically was, it would be of quality level 1. Just like
the action and state space size, we can judge this benchmark
feature without any empirical evaluations.

Noise As DAC means working with algorithms that may
not have exact same execution times and patterns across dif-
ferent runs and hardware setups, a DAC agent should be able
to learn and perform in noisy settings. Therefore we consider
reward noise, which makes finding the target policy harder,
an important challenge in DAC. To measure it, we need to
run the benchmarks. We chose random policies and compute
the standard deviation normalized by the mean between 10
evaluations of the baseline policies per seed and average over
10 seeds.

Policy heterogeneity Policy heterogeneity is another com-
ponent of benchmark difficulty. If policies across benchmark
instances stay relatively similar, they should be easier and
faster to learn, as all instances provide the same or at least
a similar signal for optimizing the policy. As we do not have
access to the optimal policy for our benchmarks, we use the
results of our static policy evaluation as an estimation of how
well a single policy can cover the instance space. We com-
pare the average standard deviation normalized by the mean
static policies show across all instances.

Dynamicity Lastly, we examine how dynamic our bench-
marks are, that is how many action changes we expect in
a policy. If a benchmark is not very dynamic, policies that
only update the hyperparameter value once or twice might be
best while highly dynamic benchmarks require almost con-
stant changes. Again we lack the optimal policies to get a
definite answer to this question, but we approximate it using
static and random policies. For each benchmark, we cover the
given search space with a number of static policies and run
random policies with repeating actions. Actions are repeated

for a total of 1, 10, 100 or 1000 steps. As before, we evalu-
ate each repeat number for 10 seeds with 10 runs each. The
benchmarks are scored depending on the performance ranks
of these random policies. If the policy with only 1 repetition
performs best on average on an instance per seed, its score is
increased by 3. 10 repetitions yield 2 points, 100 1 point and
no points if the policy with 1000 repeats performs best. We
then scale this score to (0, 1), as we do with all others, for
simplicity’s sake.

F Additional experimental results

For space reasons, we did not include all comparisons of
static and dynamic policies in the main paper. As it is still
interesting to see how dynamic baselines and random policies
compare to the best and worst static policies, we include the
missing benchmarks here. Within these, we can easily iden-
tify two groups: on the Sigmoid and FastDownward bench-
marks, dynamic policies obviously perform well. FastDown-
ward in particular seems to favor heavily dynamic policies,
as our previous analysis has shown already. For ModEA and
CMA-ES, the picture is not quite so clear, with the random
policy and even CSA for CMA-ES peforming somewhere in
between the best and worst static policies. As we have seen
results on these problem settings that suggest good dynamic
policies perform far better, however, we can simply assume
CMA-ES and ModEA to be harder benchmarks to beat static
policies on. As they both have large action spaces as well as
high policy heterogeneity and noise rating in addition to this
fact, they present the upper end of difficulty in DACBench.
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Figure F1: Static and dynamic policies on Sigmoid including top &
bottom 3 static policies. The reward measures how close the chosen
discrete value is to the actual funvtion value.
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