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Abstract
Reinforcement learning is a powerful approach
to learn behaviour through interactions with an
environment. However, behaviours are usually
learned in a purely reactive fashion, where an
appropriate action is selected based on an obser-
vation. In this form, it is challenging to learn
when it is necessary to execute new decisions.
This makes learning inefficient, especially in en-
vironments that need various degrees of fine and
coarse control. To address this, we propose a
proactive setting in which the agent not only se-
lects an action in a state but also for how long to
commit to that action. Our TempoRL approach
introduces skip connections between states and
learns a skip-policy for repeating the same action
along these skips. We demonstrate the effective-
ness of TempoRL on a variety of traditional and
deep RL environments, showing that our approach
is capable of learning successful policies up to an
order of magnitude faster than vanilla Q-learning.

1. Introduction
Although reinforcement learning (RL) has celebrated many
successes in the recent years (see e.g., Mnih et al., 2015;
Lillicrap et al., 2016; Baker et al., 2020), in its classical
form it is limited to learning policies in a mostly reactive
fashion, i.e., observe a state and react to that state with
an action. Guided by the reward signal, policies that are
learned in such a way can decide which action is expected
to yield maximal long-term rewards. However, these poli-
cies generally do not learn when a new decision has to be
made. A more proactive way of learning, in which agents
proactively commit to playing an action for multiple steps
could further improve RL by (i) potentially providing bet-
ter exploration compared to common one-step exploration;
(ii) faster learning as proactive policies provide a form of
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temporal abstraction by requiring fewer decisions; (iii) ex-
plainability as learned agents can indicate when they expect
new decisions are required.

Temporal abstractions are a common way to simplify learn-
ing of policies with potentially long action sequences. Typ-
ically, the temporal abstraction is learned on the highest
level of a hierarchy and the required behaviour on a lower
level (see e.g. Sutton et al., 1999; Eysenbach et al., 2019).
For example, on the highest level a goal policy learns which
states are necessarily visited and on the lower level the be-
haviour to reach goals is learned. Spacing goals far apart
still requires to learn complex behaviour policies whereas a
narrow goal spacing requires to learn complex goal policies.
Another form of temporal abstraction is to use actions that
work at different time-scales (Precup et al., 1998). Take
for example an agent that is tasked with moving an ob-
ject. On the highest level the agent would follow a policy
with abstract actions, such as pick-up object, move object,
put-down object, whereas on the lower level actions could
directly control actuators to perform the abstract actions.

Such hierarchical approaches are still reactive, but instead
of reacting to an observation on only one level, reactions are
learned on multiple levels. Though these approaches might
allow us to learn which states are necessarily traversed in
the environment, they do not enable us to learn when a new
decision has to be made on the behaviour level.

In this work, we propose an alternative approach: a proactive
view on learning policies that allows us to jointly learn a
behaviour and how long to carry out that behaviour. To
this end, we re-examine the relationship between agent and
environment, and the dependency on time. This allows us
to introduce skip connections for an environment. These
skip connections do not change the optimal policy or state-
action-values but allow us to propagate information much
faster. We demonstrate the effectiveness of our method,
which we dub TEMPORL with tabular and deep function
approximation on a variety of environments with discrete
and continuous action spaces. Our contributions are:

1. We propose a proactive alternative to classical RL.

2. We introduce skip-connections for MDPs by playing
an action for several consecutive states, which leads to
faster propagation of information about future rewards.
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3. We propose a mechanism based on a hierarchy for
learning when to make new decisions through the use
of skip-connections.

4. On classical and deep RL benchmarks, we show that
TEMPORL outperforms plain DQN, DAR and FiGAR
both in terms of learning speed and sometimes even by
converging to better policies.

2. Related Work
A common framework for temporal abstraction in RL is the
options framework (Precup et al., 1998; Sutton et al., 1999;
Stolle & Precup, 2002; Bacon et al., 2017; Harutyunyan
et al., 2018; Mankowitz et al., 2018; Khetarpal & Precup,
2019). Options are triples 〈I, π, β〉 where I is the set of
admissible states that defines in which states the option can
be played; π is the policy the option follows when it is
played; and β is a random variable that determines when an
option is terminated. In contrast to our work, options require
a lot of prior knowledge about the environment to determine
the set of admissible states, as well as the option policies
themselves. However, Chaganty et al. (2012) proposed to
learn options based on observed connectedness of states.
Similarly, SoRB (Eysenbach et al., 2019) uses data from
the replay buffer to build a connectedness graph, which
allows to query sub-goals on long trajectories. Further work
on discovering options paid attention to the termination
criterion, learning persistent options (Harb et al., 2018) and
meaningful termination criteria (Vezhnevets et al., 2016;
Harutyunyan et al., 2019).

Similarly, in AI planning macro actions provide temporal
abstractions. However, macro actions are not always appli-
cable as some actions can be locked. Chrpa & Vallati (2019)
propose to learn when macro actions become available again,
allowing them to identify non-trivial activities. For various
problem domains of AI planning, varieties of useful macro
actions are known and selecting which macro actions to
consider is not trivial. Vallati et al. (2019) propose a macro
action selection mechanism that selects which macro actions
should be considered for new problems. Further, Nasiriany
et al. (2019) show that goal-conditioned policies learned
with RL can be incorporated into planning. With complex
state observations goal states are difficult to define.

An important element in DQN’s success in tackling various
Atari games (Mnih et al., 2015) is due to the use of frame
skipping (Bellemare et al., 2013). Thereby the agent skips
over a few states, always playing the same action, before
making a new decision. Without the use of frame skip-
ping, the change between successive observations is small
and would have required more observations to learn the
same policy. Tuning the skip-size can additionally improve
performance (Braylan et al., 2015; Khan et al., 2019). A
similar line of research focuses on learning persistent poli-

cies which always act after a static, fixed time-step for one-
dimensional (Metelli et al., 2020) and multi-dimensional
actions (Lee et al., 2020). However, static skip-sizes might
not be ideal. Dabney et al. (2020) demonstrated that tem-
porally extended ε-greedy schedules improve exploration
and thereby performance in sparse-reward environments
while performing close to vanilla ε-greedy exploration on
dense-reward environments.

Different techniques have been proposed to handle contin-
uous time environments (Doya, 2000; Tiganj et al., 2017).
Recently, Huang et al. (2019) proposed to use Markov Jump
Processes (MJPs). MJPs are designed to study optimal con-
trol in MDPs where observations have an associated cost.
The goal then is to balance the costs of observations and
actions to act in an optimal manner with respect to total cost.
Their analysis demonstrated that frequent observations are
necessary in regions where an optimal action might change
rapidly, while in areas of infrequent change, fewer obser-
vations are sufficient. In contrast to ours, this formalism
strictly prohibits observations of the skipped transitions to
save observation costs and thus losing a lot of information,
which otherwise could be used to learn how to act while
simultaneously learning when new decisions are required.

Schoknecht & Riedmiller (2002; 2003) demonstrated that
learning with multi-step actions can significantly speed up
RL. Relatedly, Lakshminarayanan et al. (2017) proposed
DAR, a Q-network with multiple output heads per action
to handle different repetition lengths, drastically increasing
the action space but improving learning. In contrast to that,
Sharma et al. (2017) proposed FiGAR, a framework that
jointly learns an action policy and a second repetition policy
that decides how often to repeat an action. Crucially, its
repetition policy is not conditioned on the chosen action
resulting in independent repetition and behaviour actions.
The polices are learned together through a joint loss. Thus,
counter to our work, the repetition policy only learns which
repetition length works well on average for all actions. Fur-
ther, FiGAR requires modification to the training method of
a base agent to accommodate the repetition policy. When
evaluating our method in the context of DQN, we compare
against DAR and in the context of DDPG against FiGAR
as they were originally developed and evaluated on these
agent types. The appendix, code and experiment results are
available at github.com/automl/TempoRL.

3. TempoRL
We begin this section by introducing skip connections into
MDPs, propagating information about expected future re-
wards faster. We then introduce a novel learning mechanism
that makes use of a hierarchy to learn a policy that is capable
of not only learning which action to take, but also when a
new action has to be chosen.

https://www.github.com/automl/TempoRL
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Figure 1. Example transitions with skip of length three (drawn with
· · · ). At the same time we can also observe shorter skips of length
two (- - -) and normal steps, i.e. skips of length one (−).

3.1. Temporal Abstraction through Skip MDPs

It is possible to make use of contextual information in MDPs
(Hallak et al., 2015; Modi et al., 2018; Biedenkapp et al.,
2020). To this end, we contextualize an existing MDPM
to allow for skip connections as MC := {Mc}c∈C with
Mc := 〈S,A,Pc,Rc〉. Akin to options, a skip-connection
c is a triple 〈s, a, j〉, where s is the starting state for a skip
transition (and not a set of states as in the options frame-
work); a is the action that is executed when skipping through
the MDP; and j is the skip-length, where a ∈ A, s ∈ S and
j ∈ J = {1, . . . , J}. This context to the MDP induces dif-
ferent MDPs with shared state and action spaces (S , A), but
different transitions Pc and reward functionsRc to account
for the introduced skips.

In practice however, the transition and reward functions are
unknown and do not allow to easily insert skips. Neverthe-
less, as we make use of action repetition, we can simulate a
skip connection. A skip connects two states s and s′ iff state
s′ is reachable from state s by repeating action a j-times.
This gives us the following skip transition function:

Pc(s, a, s′) =
{ ∏j−1

k=0 Pasksk+1
if reachable

0 otherwise
(1)

with sk and sk+1 the states traversed by playing action a for
the kth time, and with s0 = s and sj = s′. This change in
the transition function is reflected accordingly in the reward:

Rc(s, a, s′) =
{ ∑j−1

k=0 γ
kRasksk+1

if reachable
0 otherwise.

(2)

Thus, for skips of length 1 we recover the original transition
function P〈s,a,1〉(s, a, s′) = Pass′ as well as the original re-
ward functionR〈s,a,1〉(s, a, s′) = Rass′ . The goal with skip-
MDPs is to find an optimal skip policy πJ : S × A 7→ J ,
i.e., a policy that takes a state and a behaviour action as
input and maps to a skip value that maximally reduces the
total required number of decisions to reach the optimal re-
ward. Thus, similar to skip-connections in neural networks,
skip MDPs allow us to propagate information about future
rewards much more quickly and enables us to determine
when it becomes beneficial to switch actions.

3.2. Learning When to Make Decisions

In order to learn using skip connections we need a new
mechanism that selects which skip connection to use. In

order to facilitate this, we propose using a hierarchy in which
a behaviour policy determines the action a to be played
given the current state s, and a skip policy determines how
long to commit to this behaviour.

To learn the behaviour, we can make use of classical Q-
learning, where theQ-function gives a mapping of expected
future rewards when playing action a in state st at time t
and continuing to follow the behaviour policy π thereafter.

Qπ(s, a) := E [rt + γQπ(st+1, at+1)|s = st, a] (3)

To learn to skip, we first have to define a skip-action space
that determines all possible lengths of skip-connections, e.g.,
j ∈ {1, 2, . . . , J}. To learn the value of a skip we can make
use of n-step Q-learning with the condition that, at each
step of the j steps, the action stays the same.

QπJ (s, j|a) :=

E

[
j−1∑
k=0

γkrt+k + γjQπ(st+j , at+j)|s = st, a, j

]
(4)

We call this a flat hierarchy since the behaviour and the skip
policy have to always make decisions at the same time-step;
however, the behaviour policy has to be queried before the
skip policy. Once we have determined both the action a and
the skip-length j we want to perform, we execute this action
for j steps. We can then use standard temporal difference up-
dates to update the behaviour and skip Q-functions with all
one-step observations and the overarching skip-observation.
Note that the skip Q-function can also be conditioned on
continuous actions if the behaviour policy can handle con-
tinuous action-spaces.

One interesting observation regarding this learning scheme
is that, when playing skip action j, we are able to also
observe all smaller skip transitions for all intermediate steps.
Figure 1 gives a visual representation. Specifically, we can
directly see that, when executing a skip of length j, we can
observe and learn from j·(j+1)

2 skip-transitions in total. As
we observe all intermediate steps, we can use this trajectory
of transitions to build a local connectedness graph (similar to
Figure 1) from which we can look up all skip-connections.
This allows us to efficiently learn the values of multiple
skips, i.e. the action value at different time-resolutions. For
pseudo-code and more details we refer to Appendix B.

3.3. Learning When to Make Decisions in Deep RL

When using deep function approximation for TEMPORL we
have to carefully consider how we parameterize the skip
policy. Commonly, in deep RL we do not only deal with
featurized states but also with image-based ones. Depending
on the state modality we can consider different architectures:

Concatenation The simplest parametrization of our skip-
policy assumes that the state of the environment we are
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(b) Context

Figure 2. Schematic representations of considered architectures for
learning when to make decisions, where at is the action coming
from a separate behaviour policy.

learning from is featurized, i.e., a state is a vector of indi-
vidual informative features. In this setting, the skip-policy
network can take any architecture deemed appropriate for
the environment, where the input is a concatenation of the
original state st and the chosen behaviour action at, i.e.,
s′t = (st, at), see Figure 2a. This allows the skip-policy
network to directly learn features that take into account the
chosen behaviour action. However, note that this concatena-
tion assumes that the state is already featurized.

Contextualization In deep RL, we often have to learn to
act directly from images. In this case, concatenation is not
trivially possible. Instead we propose to use the behaviour
action as context information further down-stream in the net-
work. Feature learning via convolutions can then progress
as normal and the learned high-level features can be con-
catenated with the action at and be used to learn the final
skip-value, see Figure 2b.

Shared Weights Concatenation and contextualization learn
individual policy networks for the behaviour and skip poli-
cies and do not share information between the two. To
achieve this we can instead share parts of the networks,
e.g., the part of learning higher-level features from im-
ages (see Figure 3). This allows us to learn the two
policy networks with potentially fewer weights than two
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Figure 3. Architecture with
shared feature representation
for joint learning of when to
make a decision and what
action to take.

completely independently
learned networks. In the for-
ward and backward passes,
only the shared feature rep-
resentation with the corre-
sponding output layers are
active. Similar to the con-
textualization, the output
layers for the skip-values re-
quire the selected action, i.e.
the argmax of the action out-
puts, as additional input.

4. Experiments
We evaluated TEMPORL with tabular as well as deep Q-
functions. We first give results for the tabular case. All code,
the appendix and experiment data including trained policies
are available at github.com/automl/TempoRL. For
details on the used hardware see Appendix C.

4.1. Tabular TempoRL

In this subsection, we describe experiments for a tabular Q-
learning implementation that we evaluated on various grid-
worlds with sparse rewards (see Figure 4). We first evaluate
our approach on the cliff environment (see Figure 4a) before
evaluating the influence of the exploration schedule on both
vanilla and TEMPORL Q-learning, which we refer to as Q
and t-Q, respectively.

GS

(a) Cliff
GS

(b) Bridge

G

S

(c) ZigZag

Figure 4. 6× 10 Grid Worlds. Agents have to reach a fixed goal
state from a fixed start state. Dots represent decision steps of
vanilla and TEMPORL Q-learning policies.

Gridworlds All considered environments (see Figure 4) are
discrete, deterministic, have sparse rewards and have size
6× 10. Falling off a cliff results in a negative reward (−1)
and reaching a goal state results in a positive reward (+1).
For a more detailed description of the gridworld environ-
ments we refer to Appendix D.

For this experiment, we limit our TEMPORL agent to a max-
imum skip length of J = 7; thus, a learned optimal policy
requires 4 decision points instead of 3. For evaluations using
larger skips we refer to Appendix E. Note that increasing
the skip-length improves TEMPORL up to some point, at
which it has too many irrelevant skip-actions at its disposal
which slightly decreases the performance. We compare the
learning speed, in terms of training policies, of our approach
to a vanilla Q-learning agent. Both methods are trained for
10 000 episodes using the same ε-greedy strategy, where ε
is linearly decayed from 1.0 to 0.0 over all episodes.

Figure 5a depicts the evaluation performance of both meth-
ods. TEMPORL is 13.6× faster than its vanilla counterpart
to reach a reward of 0.5, and 12.4× faster to reach a reward
of 1.0 (i.e., always reach the goal). Figure 5b shows the
number of required steps in the environment, as well as the
number of decision steps. TEMPORL is capable of find-
ing a policy that reaches the goal much faster than vanilla
Q-learning while requiring far fewer decision steps. Further-
more, TEMPORL recovers the optimal policy quicker than
vanilla Q-learning. Lastly we can observe that after having
trained for ≈ 6 000 episodes, TEMPORL starts to increase
the number of decision points. This can be attributed to skip
values of an action having converged to the same value and
our implementation selecting a random skip as tie-breaker.

Table 1 summarizes the results on all environments in terms
of normalized area under the reward curve and number of
decisions for three different ε-greedy schedules. A reward
AUC value closer to 1.0 indicates that the agent was capable

https://www.github.com/automl/TempoRL
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(a) Cliff – Reward per Episode (b) Cliff – Steps per Episode (c) Temporal Exploration
Figure 5. Evaluation performance of tabular Q-learning agents over 100 random seeds. (a) & (b): The agents were trained with a
linearly-decaying ε-greedy policy on the cliff environment. (a) Achieved reward. (b) Length of executed policy (· · · ) and number of
decisions (—) made by the policies. (c) Comparison to temporally extended ε-greedy exploration (te-ε-greedyQ in plot) on a 23× 23
Gridworld (Dabney et al., 2020). t-Q is our proposed TEMPORL agent. The lines/shaded area represent the mean/standard deviation.

Table 1. Normalized AUC for reward and average number of deci-
sion steps. Both agents are trained with the same ε schedule.

(a) linearly decaying ε-schedule

Cliff Bridge ZigZag

Q t-Q Q t-Q Q t-Q
RewardAUC 0.92 0.99 0.75 0.97 0.57 0.92

Decisions 27.9 5.2 49.5 5.0 83.6 7.9

(b) logarithmically decaying ε-schedule

RewardAUC 0.96 0.99 0.94 0.98 0.90 0.96

Decisions 21.7 4.9 21.4 5.3 35.6 6.9

(c) constant ε = 0.1

RewardAUC 0.99 0.99 0.98 0.99 0.95 0.99

Decisions 17.1 5.1 14.7 5.2 27.6 7.1

of learning to reach the goal quickly. A lower number of
decisions is better as fewer decisions were required to reach
the goal, making a policy easier to learn. In view of both
metrics, TEMPORL readily outperforms the vanilla agent,
learning much faster and requiring far fewer decisions.

Sensitivity to Exploration As the used exploration mech-
anism can have a dramatic impact on agent performance
we evaluated the agents for three commonly used ε-greedy
exploration schedules. In the cases of linearly and loga-
rithmically decaying schedules, we decay ε over all 10 000
training episodes, starting from 1.0 and decaying it to 0 or
10−5, respectively. In the constant case, we set ε = 0.1.

As shown in Table 1, maybe not surprisingly, too much
(linear) and too little (log) exploration are both detrimental
to the agent’s performance. However, TEMPORL performs
quite robustly even using suboptimal exploration strategies.
TEMPORL outperforms its vanilla counterpart in all cases,
showing the effectiveness of our proposed method.

Guiding Exploration To demonstrate TEMPORL not only
benefits through better exploration but also learning when to
act, we use the 23×23 Gridworld and agent hyperparameters
as introduced by Dabney et al. (2020).

An agent starts in the top center and has to find a goal further
down and to the left only getting a reward for reaching the
goal within 1000 steps. Temporally-extended exploration
(te-ε-greedy Q-learning; Dabney et al., 2020) is able to
cover a space much better than 1-step exploration. However,
it falls short in guiding the agent back to high reward areas.
TEMPORL enables an agent to quickly find a successful
policy that reach a goal while exploring around such a policy.
Figure 5c shows TEMPORL reliably reaches the goal after
≈ 30 episodes. An agent using temporally-extended epsilon
greedy exploration does not reliably reach the goal in this
time-frame and on average requires twice as many steps.

4.2. Deep TempoRL

In this section, we describe experiments for agents us-
ing deep function approximation implemented with Py-
Torch (Paszke et al., 2019) in version 1.4.0. We begin with
experiments on featurized environments before evaluating
on environments with image states. We evaluate TEMPORL
for DQN with different architectures for the skipQ-function.
We compare against dynamic action repetition (DAR; Lak-
shminarayanan et al., 2017) for the DQN experiments and
against Fine grained action repetition (FiGAR Sharma et al.,
2017) for experiments with DDPG.1

4.2.1. ADVERSARIAL ENVIRONMENT – DDPG

Setup We chose to first evaluate on OpenAI gyms (Brock-
man et al., 2016) Pendulum-v0 as it is an adversarial setting
where high action repetition is nearly guaranteed to over-
shoot the balancing point. Thus, agents using action repeti-
tion that make mistakes during training will have to spend
additional time learning when it is necessary to be reactive;
a challenge vanilla agents are not faced with. We trained all
DDPG agents (Lillicrap et al., 2016) for a total of 3× 104

training steps and evaluated the agents every 250 training
steps. The first 103 steps follow a uniform random policy to
generate the initial experience. We used Adam (Kingma &
Ba, 2015) with PyTorchs default settings.

1Neither DAR, nor FiGAR are publicly available and thus
we used our own reimplementation available at github.com/
automl/TempoRL.

https://www.github.com/automl/TempoRL
https://www.github.com/automl/TempoRL
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Table 2. Average normalized reward AUC for DDPG agents on Pendulum-v0. t-DDPG and FiGAR are evaluated over different maximal
skip-lengths for 15 seeds. Corresponding learning curves are given in Appendix F

t-DDPG FiGAR

DDPG 2 4 6 8 10 14 20 2 4 6 8 10 14 20

0 .92 0.89 0.89 0 .90 0.89 0.89 0.89 0.88 0 .76 0.57 0 .39 0.31 0.28 0.25 0.24

Agents All actor and critic networks of all DDPG agents
consist of two hidden layers with 400 and 300 hidden units
respectively. Following (Sharma et al., 2017), FiGAR in-
troduces a second actor network that shares the input layer
with the original actor network. The output layer is a soft-
max layer with J outputs, representing the probability of
repeating the action for j ∈ {1, . . . , J} time-steps. Both
actor outputs are jointly input to the critic and gradients
are directly propagated from the critic through both actors.
TEMPORL DDPG (which we refer to as t-DDPG in the fol-
lowing) uses the concatenation architecture which takes the
state with the action output of the DDPG actor as input and
makes use of the critic’s Q-function when learning the skip
Q-function. We evaluate t-DDPG and FiGAR on a grid of
maximal skip lengths of {2, 4, 6, . . . , 20}. See Appendix F
for implementation details and all used hyperparameters.

Pendulum Table 2 confirms that agents using action repe-
tition indeed are slower in learning successful policies, as
reflected by the normalized reward AUC. As FiGAR does
not directly inform the skip policy about the chosen repeti-
tion value or vica versa, the agent tends to struggle quite a
lot in this environment already with only two possible skip-
values and is not capable of handling larger maximal skip
values. In contrast to that, t-DDPG only slightly lags behind
vanilla DDPG and readily adapts to larger skip lengths, by
quickly learning to ignore irrelevant skip-values. Further,
due to making use of n-step learning, t-DDPG starts out very
conservative as large skip values appear to lead to larger
negative rewards in the beginning. With more experience
however, t-DDPG learns when switching between actions
becomes advantageous, thereby approximately halving the
required decisions (see Appendix F).

4.2.2. FEATURZIED ENVIRONMENTS – DQN

Setup We trained all agents for a total of 106 training steps
using a constant ε-greedy exploration schedule with ε set
to 0.1. We evaluated all agents every 200 training steps.
We used the Adam with a learning rate of 10−3 and default
parameters as given in PyTorch v1.4.0. For increased learn-
ing stability, we implemented all agents using double deep
Q networks (van Hasselt et al., 2016). All agents used a
replay buffer with size 106 and a discount factor γ of 0.99.
The TEMPORL agents used an additional replay buffer of
size 106 to store observed skip-transitions. We used the
MountainCar-v0 and LunarLander-v2 environments. See

Appendix G for a detailed description of the environments.

Agents The basic DQN architecture consists of 3 layers,
each with 50 hidden units and ReLu activation functions.
The DAR baseline used the same architecture as the DQN
agent but duplicated the output heads twice, each of which
is associated with specific repetition values allowing for fine
and coarse control. We evaluated possible coarse control
values on the grid {2, 4, 6, 8, 10}, keeping the fine-control
value fixed to 1 to allow for actions at every-time step.

For TEMPORL agents not using weight sharing we used the
same DQN architecture for both Q-functions. The concate-
nation architecture used an additional input unit whereas the
context architecture added the behaviour action as context at
the third layer after using 10 additional hidden units to pro-
cess the behaviour action. An agent using a weight-sharing
architecture shared the first two layers of the DQN archi-
tecture and used the third layer of the DQN architecture to
compute the behaviour Q-values. The skip-output used 10
hidden units to process the behaviour action and processed
this output together with the hidden state of the 2nd layer in
a 3rd layer with 60 hidden units. We refer to a DQN using
TEMPORL as t-DQN in the following.

Influence of the Skip-Architecture We begin by evaluat-
ing the influence of architecture choice on our t-DQN on
both environments, before giving a more in-depth analysis
on the learning behaviour in the individual environments.
To this end, we report the normalized reward AUC for all
three proposed architectures and different maximal skip-
lengths, see Table 3. Both the concat and context archi-
tectures behave similarly on both environments, which is
to be expected as they differ very little in setup. Both ar-
chitectures have an increase in AUC before reaching the
best maximal skip-length for the respective environment.
The shared architecture, mostly conceptualized for image-
based environments, however shows more drastic reactions
to choice of J , leading to the best result in the first and to
the worst result in the other environment.

MountainCar Tables 3a & 4a depict the performance of
the agents for different maximal skip lengths and Figure 6a
shows the learning curves of the best TEMPORL architecture
as well as the best found DAR agent. On MountainCar
the DQN baseline struggles in learning a successful policy,
resulting in a small AUC of 0.50 compared to the best result
of t-DQN of 0.64. Furthermore, a well tuned DAR baseline,
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Table 3. Average normalized reward AUC for different TEMPORL architectures and maximal skip-lengths over 50 seeds. All agents are
trained with the same ε schedule. Bold faced values give the overall best AUC and cursive values the best per architecture.

(a) MountainCar-v0

Max Skip 2 4 6 8 10

concat 0.469 0.523 0.602 0.626 0 .630

context 0.429 0.540 0.601 0.608 0 .620

shared 0.440 0.464 0.592 0.561 0 .644

(b) LunarLander-v2

Max Skip 2 4 6 8 10

concat 0.855 0 .878 0.868 0.862 0.830

context 0.858 0 .876 0.871 0.859 0.837

shared 0 .851 0.837 0.803 0.769 0.696

Figure 6. Evaluation performance of deepQ-learning agents on MountainCar-v0 and LunarLander-v2. Solid lines give the mean and the
shaded area the standard deviation over 50 random seeds. The sub- and superscripts of DAR give the best found fine and coarse repetition
values respectively. t-DQN is our proposed method using the best architecture as reported in Table 3. (top) Achieved rewards. (bottom)
Length of executed policy (· · · ) and number of decisions (—) made by the policies.

Table 4. Average normalized reward AUC for maximal skip-length
of 10 for MountainCar-v0 and 4 for LunarLander-v2 over 50 seeds.
All agents are trained with the same ε schedule. We show varying
max
min repetitions for DAR and the best t-DQN architecture (see
Table 3). Bold faced values give the overall best AUC and cursive
values the best per method which are plotted in Figure 6.

(a) MountainCar-v0

DAR

DQN t-DQN 2
1

4
1

6
1

8
1

10
1

0 .50 0 .64 0.43 0.45 0 .60 0.56 0.56

(b) LunarLander-v2

0 .83 0 .88 0.84 0 .85 0.81 0.72 0.60

carefully trading off fine control and coarse control results
in an AUC of 0.593. Figure 6a shows that DAR learns to
trade off both coarse and fine-control. However, as DAR
does not know that two output heads correspond to the same
action, with different repetition values, DARs reward begins
to drop in the end as it learns to overly rely on coarse control.
During the whole training procedure the best t-DQN agent
and the best DAR agent result in policies that require far
fewer decisions, with t-DQN requiring only ≈ 50 decisions
per episode reducing the number of decisions by a factor of
≈ 3 compared to vanilla DQN.

LunarLander For such a dense reward there is only a small
improvement for t-DQN and a properly tuned DAR agent.

Again the t-DQN agent performs best, achieving a slightly
higher AUC of 0.88 than the best tuned DAR agent (0.85),
see Tables 3b & 4b. Further, Figure 6b shows that, in this
setting, t-DQN agents quickly learn to be very reactive,
acting nearly at every time-step. Again, DAR can not learn
that some output heads apply the same behaviour action for
multiple time-steps, preferring coarse over fine control.

4.2.3. ATARI ENVIRONMENTS

Setup We trained all agents for a total of 2.5× 106 training
steps (i.e. only 10 million frames) using a linearly ε-greedy
exploration schedule over the first 200 000 time-steps with a
final fixed ε set to 0.01. We evaluated all agents every 10 000
training steps and evaluated for 3 episodes. For increased
learning stability we implemented all agents using double
deep Q networks. For DQN we used the architecture of
Mnih et al. (2015) which also serves as basis for our shared
t-DQN and the DAR architecture. As maximal skip-value
we chose 10. A detailed list of hyperparameters is given in
Appendix H. Following (Bellemare et al., 2013), we used a
frame-skip of 4 to allow for a fair comparison to the base
DQN. We used OpenAI Gym’s We trained all agents on the
games BEAMRIDER, FREEWAY, MSPACMAN, PONG and
QBERT.

Learning When to Act in Atari Figure 7 depicts the learn-
ing curves as well as the number of steps and decisions. The
training behaviour from our TEMPORL agents falls into one
of three categories on all evaluated Atari games.
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Figure 7. Evaluation performance on Atari environments. Solid lines give the mean and the shaded area the standard deviation over 15
random seeds. (top) Achieved rewards. (bottom) Length of executed policy (· · · ) and number of decisions (—) made by the policies. To
make trends more visible, we smooth over a window of width 7.

(i) Our learned t-DQN exhibits a slight improvement in
learning speed, on MSPACMAN and PONG2 before being
caught up by DQN, with both methods converging to the
same final reward (see Figures 7a & H1a). Nevertheless,
TEMPORL learns to make use of different degrees of fine
and coarse control to achieve the same performance. For
example, a trained proactive TEMPORL policy requires
roughly 33% fewer decisions. DAR on the other hand,
learns to overly rely on the coarse control, leading to far
fewer decisions but also worse final performance.

(ii) On QBERT the learning performance of our t-DQN lags
behind that of vanilla DQN over the first 106 steps. Fig-
ure 7b (bottom) shows that in the first ≈ 0.5 × 106 steps,
TEMPORL first has to learn which skip values are appropri-
ate for Qbert. In the next ≈ 0.5 × 106 steps, our t-DQN
begins to catch up in reward, while using its learned fine and
coarse control, before starting to overtake its vanilla coun-
terpart. As it was not immediately clear if this trend would
continue after 2.5 × 106 training steps, we continued the
experiment for twice as many steps. TEMPORL continues to
outperform its vanilla counterpart, having learned to trade
off different levels of coarse and fine control. The effect of
over-reliance of DAR on the coarse control is further am-
plified on QBERT resulting in far worse policies than either
vanilla DQN and TEMPORL.

(iii) In games such as FREEWAY and BEAMRIDER (Figures
7c & H1b), we see an immediate benefit to jointly learning
when and how to act through TEMPORL. For these games,
our t-DQNs begin to learn faster and achieve a better final
reward than vanilla DQNs. An extreme example for this is
FREEWAY, where the agents have to control a chicken to
cross a busy multi-lane highway as often as possible within
a fixed number of frames. To this end one action has to
be played predominantly, whereas the other two possible
actions are only needed to sometimes avoid an oncoming
car. The vanilla DQN learns to nearly constantly play the
predominant action, but does not learn proper avoidance
strategies, leading to a reward of ≈ 25 (i.e successfully
crossing the road 25 times). t-DQN on the other hand not

2Results for PONG and BEAMRIDER are given in Appendix H.

(a) MountainCar (b) QBert

Figure 8. Example States in which TEMPORL makes new deci-
sions. The agents are trained with a maximal skip-length of 10.
(a) Example states in which TEMPORL learned when to make new
decisions in MountainCar, starting slightly to the right of the valley.
(b) Example states of Qbert. To make it easier to see where QBert
is in the images we highlight him as a red square and indicate the
taken trajectory with a blue arrow.

only learns faster to repeatedly play the predominant action,
but also learns proper avoidance strategies by learning to
anticipate when a new decision has to be made, resulting in
an average reward close to the best possible reward of 34.
Here, DAR profits from the use of a coarse control, learning
faster than vanilla DQN. However, similarly to vanilla DQN,
DAR learns a policy that can only achieve a reward of 25,
not learning to properly avoid cars.

5. Analysis of TempoRL Policies
To analyze TEMPORL policies and the decisions when to
act we selected trained agents and evaluated their policies
on the environments they were trained on. Videos for all the
behaviours we describe here are part of the supplementary3.
In the tabular case we plot the key-states for an agent (see
Figure 4) that can skip at most 7 steps ahead. On the Cliff
environment TEMPORL learns to make a decision in the
starting state, once it has cleared the cliff, once before reach-
ing the other side (since it can not skip more than 7 states)
and once to go down into the goal. Similar observations
can be made for all grid-worlds. This shows that in this
setting our TEMPORL agents are capable of skipping over
unimportant states and learned when they are required to
perform novel actions.

3Available at github.com/automl/TempoRL

https://www.github.com/automl/TempoRL
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Key-states in which TEMPORL decides to take new actions
in the featurized MountainCar environment are shown in
Figure 8a. Starting slightly to the right of the valley, the
agent learns to gain momentum by making use of skips,
repeating the left action4. As soon as TEMPORL considers
the run-up to be sufficient to clear the hill on the right, it
switches the action direction. From this point on TEMPORL
sticks with this action and always selects the largest avail-
able skip-length (i.e. 10). Still, TEMPORL has to make
many intermediate decisions, as the agent is limited by the
maximal skip-length.

Finally, we evaluated TEMPORL’s skipping behaviour on
Qbert. An example of key states in which TEMPORL de-
cides to make new decisions are given in Figure 8b. Our
TEMPORL agent learns to use large skip-values to reach
the bottom of the left column, lighting up all platforms in
between. After that the agent makes use of large skips to
light up the second diagonal of platforms. Having lit up
a large portion of the platform, TEMPORL starts to make
fewer uses of skips. This behaviour is best observed in the
video provided in the supplementary. Also, note that we
included all trained networks in our supplementary such that
readers can load the networks to study their behaviour.

This analysis confirms that TEMPORL is capable of not
only reacting to states but also learning to anticipate when
a switch to a different action becomes necessary. Thus,
besides the benefit of improved training speed through better
guided exploration, TEMPORL improves the interpretability
of learned policies.

6. Conclusion
We introduced skip-connections into the existing MDP for-
mulation to propagate information about future rewards
much faster by repeating the same action several times.
Based on skip-MDPs, we presented a learning mechanism
that makes use of existing and well understood learning
methods. We demonstrated that our new method, TEMPORL
is capable of learning not only how to act in a state, but also
when a new action has to be taken, without the need for
prior knowledge. We empirically evaluated our method
using tabular and deep function approximation and empir-
ically evaluated the learning behaviour in an adversarial
setting. We demonstrated that the improved learning speed
not only comes from the ability of repeating actions but that
the ability to learn which repetitions are helpful provided
the basis of learning when to act. For both tabular and deep
RL we demonstrated the high effectiveness of our approach
and showed that even in environments requiring mostly fine-

4Note, in the particular example given in Figure 8a the agent
first performs the left action twice, each for one time-step before
it recognizes that it is gaining momentum and it can make use of
large skips.

control our approach performs well. Further, we evaluated
the influence of exploration strategies, architectural choices
and maximum skip-values of our method and showed it to
be robust.

As pointed out by Huang et al. (2019), observations might
be costly. In such cases, we could make use of TEMPORL to
learn how to behave and when new actions need to be taken;
when using the learned policies, we could use the learned
skip behaviour to only observe after having executed the
longest skips possible. All in all, we believe that TEMPORL
opens up new avenues for RL methods to be more sample
efficient and to learn complex behaviours. As future work,
we plan to study distributional TEMPORL as well as how
to employ different exploration policies when learning the
skip policies and behaviour policies.
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Rajan and Frank Hutter by the German Research Foundation
(DFG) through grant no INST 39/963-1 FUGG as well as
funding by the Robert Bosch GmbH, and Marius Lindauer
by the DFG through LI 2801/4-1. The authors would like to
thank Will Dabney for providing valuable initial feedback as
well as Fabio Ferreira and Steven Adriaensen for feedback
on the first draft of the paper.

References
Bacon, P., Harb, J., and Precup, D. The option-critic ar-

chitecture. In S.Singh and Markovitch, S. (eds.), Pro-
ceedings of the Conference on Artificial Intelligence
(AAAI’17). AAAI Press, 2017.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell,
G., McGrew, B., and Mordatch, I. Emergent tool use
from multi-agent autocurricula. In Proceedings of the
International Conference on Learning Representations
(ICLR’20), 2020. Published online: iclr.cc.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation platform
for general agents. J. Artif. Intell. Res., 47:253–279, 2013.

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., and
Lindauer, M. Dynamic Algorithm Configuration: Foun-
dation of a New Meta-Algorithmic Framework. In Lang,
J., Giacomo, G. D., Dilkina, B., and Milano, M. (eds.),
Proceedings of the Twenty-fourth European Conference
on Artificial Intelligence (ECAI’20), pp. 427–434, June
2020.

Braylan, A., Hollenbeck, M., Meyerson, E., and Miikku-
lainen, R. Frame skip is a powerful parameter for learn-

iclr.cc


TempoRL: Learning When to Act

ing to play atari. In Proceedings of the Workshops at
Twenty-ninth National Conference on Artificial Intelli-
gence (AAAI’15), 2015.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
arXiv:1606.01540 [cs.LG], 2016.

Chaganty, A., Gaur, P., and Ravindran, B. Learning in a
small world. In van der Hoek, W., Padgham, L., Conitzer,
V., and Winikoff, M. (eds.), International Conference on
Autonomous Agents and Multiagent Systems (AAMAS)
2012, pp. 391–397. IFAAMAS, 2012.

Chrpa, L. and Vallati, M. Improving domain-independent
planning via critical section macro-operators. In Henten-
ryck, P. V. and Zhou, Z. (eds.), Proceedings of the Confer-
ence on Artificial Intelligence (AAAI’19), pp. 7546–7553.
AAAI Press, 2019.

Dabney, W., Ostrovski, G., and Barreto, A. Temporally-
extended ε-greedy exploration. arXiv:2006.01782
[cs.LG], 2020.

Doya, K. Reinforcement learning in continuous time and
space. Neural Computation, 12(1):219–245, 2000.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Search on
the replay buffer: Bridging planning and reinforcement
learning. In Wallach, H., Larochelle, H., Beygelzimer, A.,
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Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R.
(eds.), Proceedings of the 32nd International Conference
on Advances in Neural Information Processing Systems
(NeurIPS’19), pp. 14814–14825. 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
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A. Detailed Baseline Description
Dynamic Action Repetition (DAR; Lakshminarayanan et al., 2017) is a framework for
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Figure A1. Schematic DAR Ar-
chitecture with duplicate out-
put heads to learn at two time-
scales r1 and r2.

discrete-action space deep RL algorithms. For a discrete-action space A =
{
a1, . . . , a|A|

}
DAR duplicates this space such that an agent can choose from 2 × |A| actions. Further,
DAR introduces two hyperparameters r1 and r2, each of which are associated with one half
of the new action space. These hyperparameters determine the number of time-steps an
action will be played for, with both actions ak and a2k (1 ≤ k ≤ |A|) performing the same
behaviour but ak is repeated for r1 time-steps and a2k for r2 time-steps. When training an
agent, there are no modifications to the training procedure, other than an agent now having
to select from a larger action space. Figure A1 schematically depicts a DAR DQN agents Q-network architecture.

This gives an agent two levels of control to decide on how long to apply an action. A drawback of this framework is that
the output heads are independent from each other and are not aware that certain action outputs have the same influence on
the environment for min(r1, r2) time-steps. Further, both r1 and r2 have to be defined beforehand, requiring good prior
knowledge about the potential levels of fine and coarse control in an environment.

Fine Grained Action Repetition (FiGAR; Sharma et al., 2017) is a framework for both discrete and continuous action
spaces. Instead of learning a single policy that has to learn both which action to play and how long to follow it (as in
DAR), FiGAR decouples the behaviour and repetition learning by using two separate policies πa : S → A and πr : S →
{1, 2, . . . ,max repetition}. When training an agent, based on a state s, πa decides which action to play and simultaneously
πr decides how long to repeat a selected action starting from s. At the time of selecting their respective actions, neither πa
nor πr are aware of the other policies decision. Thus, the action and the respective repetition value are selected independently
from each other.

To couple the learning of both policies Sharma et al. (2017) use a joint loss to update the network weights and further suggest
to use weight-sharing of the input-layers of the two policy networks. Although this aligns the policies when performing
a training step, at decision time the policies remain uninformed about each others behaviour. Counter to DAR, FiGAR
allows for much more fine-grained control over the action repetition. However, FiGAR requires more modification of a base
algorithm to allow for learning of control at different time-steps. With TEMPORL we propose a method that allows for the
same fine-grained level of control while requiring no modifications to the base agent architecture.
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Algorithm 1 TEMPORL Q-learning

1: Input: environment env with states S and actions A, skip-Actions J ,
behaviour and skip Q-functions Q(·, ·), Q(·, ·|·), training episodes E

2: Initialize Q(s, a),Q(s, j|a)∀s ∈ S, a ∈ A, j ∈ J
3: for episode∈ {1, . . . , E} do
4: s← env.reset()
5: repeat
6: a← π(s) # e.g. ε -greedy argmaxa′∈AQ(s, a′)
7: j ← πj(s, a) # e.g. ε -greedy argmaxj′∈J Q(s, j′|a)
8: trajectory← [s] # Tracks the skip trajectory
9: repeat

10: r, s′ ← env.step(a)
11: append s′ to trajectory # Records the state transitions
12: Q(s, a)← td update(Q(s, a), r, s′) # See Equation 5
13: s← s′

14: until all skips 1, . . . , j performed or episode ends
15: G ← build connectedness graph(trajectory) # Build a local connectedness graph from

the observed trajectory
16: for all connections c ∈ G do
17: get sstart, send, j′, r′ from c
18: Q(sstart, j′|a)← td update skip(Q(sstart, j′|a), r′, send) # See Equation 6
19: end for
20: until episode finished
21: end for

B. Implementation Details
Algorithm 1 details how to train a TEMPORL Q-learning agent. All elements that are new to TEMPORL are shown in
black whereas vanilla Q-learning code is greyed out. The functions td update (Line 12) and td update skip (Line 18) are
formally stated in Equations 5 and 6 respectively and give the temporal difference updates required during learning.

Q(st, at) = Q(st, at) + α


rt + γmaxQ(st+1, ·)︸ ︷︷ ︸

TD-Target

−Q(st, at)
︸ ︷︷ ︸

TD-Delta

 (5)

Q(st, jt|at) = Q(st, jt|at) + α




j−1∑
k=0

γkrt+k + γj maxQ(st+j , ·)︸ ︷︷ ︸
TD-Target

−Q(st, jt|at)
︸ ︷︷ ︸

TD-Delta


(6)

Where α is the learning rate and γ the discount factor. Note that the TD-Target in Equation 6 (as well as the skipQ-function in
Equation 4) is using the behaviourQ-function and not the skipQ-function. Thus, the skipQ-function estimates the expected
future rewards, assuming that the current skip will be the only skip in the MDP. This allows us to avoid overestimating
Q-values through multiple skips and focuses on learning of the value of the executed skip similar to double Q-learning (van
Hasselt, 2010). Further, learning of the skip-values does not interfere with learning of the behaviour Q-function.

The function build connectedness graph (Line 15) builds takes an observed trajectory and builds connectedness graph of
states that are reachable by repeatedly playing the same action (see Figure 1 in the main paper). Each connection contains
information about start and end states, the length of the skip and the discounted reward for that skip.
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C. Used Compute Resources
Tabular & Deep RL Experiments on Featurized Environments For the tabular as well as the deep experiments on
featurized environments, we evaluated all agents on a compute cluster with nodes equipped with two Intel Xeon Gold 6242
32-core CPUs, 20 MB cache and and 188GB (shared) RAM running Ubuntu 18.04 LTS 64 bit. In all cases, the agents were
allocated one CPU. The tabular agents required at most 20 minutes to complete training, whereas the deep agents required at
most 15 hours.

Deep RL Experiments on Atari Environments These experiments were run on a compute cluster with nodes equipped
with two Intel Xeon E5-2630v4 and 128GB memory running CentOS 7. For training, the agents were allocated 10 CPUs
and required at most 48 hours to complete training.

D. Gridworld Details
All considered environments (see Figure D1) are discrete, deterministic, have sparse rewards and have size 6× 10. Falling
off a cliff results in a negative reward (−1) and reaching a goal state results in a positive reward (+1). Both cliff and goal
states terminate an episode. All other states result in no reward. An agent can only execute the actions up, down, left,
right with diagonal moves not possible. If the agent does not reach a goal/cliff in 100 steps, an episode terminates without a
reward.

For the Cliff environment, a shortest path through the environment requires 16 steps. However, to reach the goal, decisions
about unique actions are only required at 3 time points. The first is in the starting state and determines that action up should
be repeated 3-times, the next is repeating action right 10-times and the final one is repeating action down 3-times. Thereby,
an optimal proactive policy that is capable of joint decision of action and skip length requires ∼ 80% fewer decisions than
an optimal reactive policy that has to make decisions in each state. As the Bridge environment is very similar, but has a
smaller cliff area below, an optimal proactive policy also requires roughly ∼ 80% fewer decisions.

On the more complex ZigZag environment, an optimal policy requires 20 steps in total to reach the goal. In this environment
however, an agent has to switch direction more often. Leading to a total of 5 required decisions. Thus in this environment an
optimal proactive policy requires roughly 75% fewer decisions.

GS

(a) Cliff

GS

(b) Bridge

G

S

(c) ZigZag

Figure D1. Copy of Figure 4 form the main paper. 6× 10 Grid Worlds. Agents have to reach a fixed goal state from a fixed start state.
Large/small dots represent decision steps of vanilla and TEMPORL Q-learning policies.
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Table E1. Normalized AUC for reward and average number of decision steps for varying maximal skip-lengths J . All agents are trained
with the same ε schedule. R denotes normalized area under the reward curve and D the average number of decision steps. Values are
results of running 10 random seeds. Columns 1 and 7 are equivalent to columns 5 & 6 in Table 1.

(a) linear decaying ε-schedule

Q t-Q
J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R 0.57 0.63 0.76 0.87 0.93 0.93 0.92 0.91 0.90 0.91 0.88 0.87 0.86 0.87 0.85 0.84
D 83.6 36.5 20.6 13.2 10.1 8.3 7.7 7.8 7.5 7.4 7.6 7.4 7.6 7.6 7.8 7.4

(b) logarithmic decaying ε-schedule

R 0.90 0.91 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95
D 35.6 21.7 14.9 11.6 9.5 8.6 6.4 6.3 6.5 5.9 6.1 6.2 7.0 6.8 7.0 6.0

(c) constant ε = 0.1

R 0.95 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
D 27.6 15.8 12.0 9.1 8.2 7.8 6.8 6.9 6.7 7.1 6.6 7.2 6.2 6.5 7.0 6.9

E. Influence of the Maximum Skip-Length
The maximum skip length J is a crucial hyperparameter of TEMPORL. A too large value might lead to many irrelevant
choices which the agent has to learn to ignore; whereas a too small value might not reduce the complexity of the environment
sufficiently enough, leading to barely an improvement over the vanilla counterpart. To evaluate the influence of the
hyperparameter on our method we trained various TEMPORL agents with varying maximal skip-lengths, starting from 2 up
to 16. Larger skips than 10 will never be beneficial for the agent as the agent is guaranteed to run into a wall for some steps.
Depending on where in the environment the agent is located, smaller skip-values might allow it to quickly traverse through
the environment.

Table E1 shows the influence of J on the ZigZag environment (see Figure 4c). In this environment, the largest skip value
that is possible without running into a wall is 6. Thus, small skip values up to 5 quickly improve the performance over
the vanilla counterpart, not only in terms of anytime performance but also in terms of required decisions. In the case of a
suboptimal exploration policy, in the form of linearly decaying ε-greedy schedule (see Table E1a), larger skip-values quickly
lead to a decrease in anytime performance, as the agent has to learn to never choose many non-improving skip actions.

For a more suiting exploration policy, too large skip-actions do not as quickly degrade the anytime performance of our
TEMPORL agents. In the case of a logarithmically decaying ε schedule (Table E1b), we can see that skip sizes larger or
equal than 12 start to negatively influence the anytime performance, whereas with a constant ε schedule only a skip-size of
16, nearly 3 times as large as the largest sensible choice, has a negative effect.

Similar observations can be made for deep TEMPORL on both Pedulum, MountainCar and LunarLander, see Tables 2 - 4
in the main paper. We can see that choosing larger maximal skip-values is beneficial, up to a point, at which many
irrelevant, and potentially useless choices are in the action space. For these, TEMPORL first has to learn on which part of the
skip-action-space to focus before really learning when new decisions need to be taken.

It is worth noting that, in the tabular case, all evaluated skip-sizes J result in better anytime-performance and a lower number
of required decision points compared to vanilla Q-learning, for all considered exploration strategies. In future work, we will
study how to allow TEMPORL to select large skip-actions without needing to learn to distinguish between many irrelevant
choices. One possible way of doing this could be by putting the skip-size on a log scale. For example using log2 could
result in only 10 actions where a TEMPORL agent could skip up to 1024 steps ahead but would still be able to exert fine
control with the smaller actions.
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Figure F1. Learning curves of different DDPG agents on Pendulum-v0. J indicates the maximal skip-length used when training t-DDPG
and FiGAR. Solid lines give the mean and the shaded area the standard deviation over 15 seeds. Top-row images show the reward achieved
and bottom-row images the required steps and decisions per evaluation rollout.
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F. DDPG Implementation Details and Additional Results
As base implementation for DDPG, we used publicly available code5 and used the default hyperparameters, except we
replaced the number of maximal training steps and initial random steps as described in the main paper. When implementing
FiGAR, we followed the description by Sharma et al. (2017). Thus, the repetition policy uses a constant epsilon-greedy
exploration. Likewise, we use a constant epsilon-greedy exploration to learn our t-DDPG.

For our t-DDPG implementation we could use the same algorithm as described in Algorithm 1. Only the greyed out parts of
normalQ-learning have to replaced by DDPG training specific elements. For example, for DDPG, the exploration policy for
the actor is given by adding exploration noise rather than following an epsilon-greedy policy. Further, we again can make
use of the base agents Q-function as shown in Equation 6.

Figure F1 depicts the learning curve for all DDPG agents with increasing maximal skip-value. As described in the main
paper, both FiGAR and t-DDPG slightly lag behind vanilla DDPG when only allowing for skips of length 2. However,
with increasing max-skip value FiGAR quickly begins to struggle and in the end even converges to worse policies, always
preferring large skip-values. Our t-DDPG using TEMPORL performs much more stable and is hardly affected by increasing
the maximal skip length. Further, t-DDPG over time learns when it is necessary to switch to new actions, roughly halving
the required decisions.

G. Featurized Environments Description
MountainCar is a challenging exploration task and requires an agent to control an under powered car to drive up a steep
hill on one side (Moore, 1990). To reach the goal, an agent has to build up momentum. The agent always receives a reward
of −1 until it has crossed the goal position and a reward of 0 afterwards. The observation consists of the car position and
velocity and the agent can either accelerate to the left or right or do nothing. To build up momentum an agent potentially
has to repeat the same action multiple times. Thus, we evaluate both t-DQN and DAR on the grid {2, 4, 6, 8, 10} for the
maximal (while keeping the minimal skip value fixed to 1) skip-value over 50 random seeds (see Tables 3a & 4a).

LunarLander The task for an agent is to land a space-ship on a lunar surface. To this end, the agent can choose to fire
the main engine, steer left or right or do nothing. Firing of the engines incurs a small cost of −0.3, whereas crashing or
successfully landing results in a large cost or reward of −100 and 100 respectively. We expect that an environment with
such a dense reward, where actions directly influence the achieved reward does not benefit from leveraging skips.

5https://github.com/sfujim/TD3

https://github.com/sfujim/TD3
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(a) Pong (b) BeamRider

Figure H1. Evaluation performance on Atari environments. Solid lines give the mean and the shaded area the standard deviation over 15
random seeds. (top) Achieved rewards. (bottom) Length of executed policy (· · · ) and number of decisions (—) made by the policies.

H. Atari
Table H1. Hyperparameters used for the Atari
Experiments

Hyperparameter Value

Batch Size 32
γ 0.99
Gradient Clip 40.0
Target update frequency 500
Learning starts 10 000
Initial ε 1.0
Final ε 0.01
ε time-steps 200 000
Train frequency 4
Loss Function Huber Loss
Optimizer Adam
Learning rate 10−4
β1 0.9
β2 0.999
Replay-Buffer Size 5× 104

Skip Replay-Buffer Size 5× 104

J 10

Architectures DQN: As architecture for DQN we used that of Mnih et al.
(2015) and used this as basis for our shared architecture. This architecture
has three layers of convolutions to handle the 84×84 input images. The first
convolution layer has 84 input channels, 32 output channels, a kernel size
of 8 and a stride of 4. The second has 32 input channels, 64 output channels,
a kernel size of 4 and a stride of 2. The second has 64 input channels, 64
output channels, a kernel size of 3 and a stride of 1. This is followed by two
hidden layers with 512 units each.

TEMPORL: The shared architecture used by our TEMPORL agent uses the
same architecture as just described but has an additional output stream for
the skip-outputs. The skip output stream combines a hidden layer with
10 units together with the output of the last convolutional layer. It then
processes these features again in two fully connected hidden layers with 512
units each.

DAR: Similarly, the DAR agent builds on the DQN architecture of Mnih
et al. (2015). However, the final output layer is duplicated and the duplicate
outputs act at a different time-resolution. To give DAR the same coarse
control as would be possible with our TEMPORL agent we fix the fine and
coarse control levels to 1 and 10 respectively.

Additional Results on PONG: Our learned t-DQN exhibits a slight improvement in learning speed, PONG before being
caught up by DQN (similar to the results on MsPacman in the main paper, see Figure 7a), with both methods converging to
the same final reward. Nevertheless, TEMPORL learns to make use of different degrees of fine and coarse control to achieve
the same performance, requiring roughly 1 000 fewer decisions.

The DAR agent really struggles to learn a meaningful policy on this game, never learning to properly avoid getting scored
on or scoring itself. A likely reason for the poor performance is the choice of hyperparameters. Potentially choosing smaller
skip-value for the coarse control could allow to learn better behaviour with DAR.

Additional Results on BEAMRIDER: Figure H1b shows an immediate benefit to jointly learning when and how to act
through TEMPORL. Our t-DQN begins to learn faster and achieve a better final reward than vanilla DQN.

Interestingly, the DAR agent, starting out with choosing to mostly apply fine control starts to learn much faster than vanilla
DQN and our TEMPORL agent, nearly reaching the final performance of vanilla DQN already ≈ 900 000 time-steps earlier.
However, the performance starts to drop when DAR starts to increase usage of the coarse control. Once the DAR agents
have learned this over-reliance on the coarse control, they do not recover, resulting in the worst final performance.


