
Learning Step-Size Adaptation in CMA-ES

Gresa Shala1?, André Biedenkapp1?, Noor Awad1, Steven Adriaensen1,
Marius Lindauer2, and Frank Hutter1,3

1 University of Freiburg, Germany
{shalag, biedenka, awad, adriaens, fh}@cs.uni-freiburg.de

2 Leibniz University Hannover, Germany
lindauer@tnt.uni-hannover.de

3 Bosch Center for Artificial Intelligence

Abstract. An algorithm’s parameter setting often affects its ability to
solve a given problem, e.g., population-size, mutation-rate or crossover-
rate of an evolutionary algorithm. Furthermore, some parameters have
to be adjusted dynamically, such as lowering the mutation-strength over
time. While hand-crafted heuristics offer a way to fine-tune and dynami-
cally configure these parameters, their design is tedious, time-consuming
and typically involves analyzing the algorithm’s behavior on simple prob-
lems that may not be representative for those that arise in practice. In
this paper, we show that formulating dynamic algorithm configuration
as a reinforcement learning problem allows us to automatically learn
policies that can dynamically configure the mutation step-size parame-
ter of Covariance Matrix Adaptation Evolution Strategy (CMA-ES). We
evaluate our approach on a wide range of black-box optimization prob-
lems, and show that (i) learning step-size policies has the potential to
improve the performance of CMA-ES; (ii) learned step-size policies can
outperform the default Cumulative Step-Size Adaptation of CMA-ES;
and transferring the policies to (iii) different function classes and to (iv)
higher dimensions is also possible.

Keywords: Evolutionary Algorithms · Reinforcement Learning · Algo-
rithm Configuration.

1 Introduction

Designing algorithms requires careful design of multiple components. Having the
foresight of how these components will interact for all possible applications is an
infeasible task. Therefore, instead of hard-wiring algorithms, human developers
often expose difficult design decisions as parameters of the algorithm [26]. To
make the algorithm usable off-the-shelf, they provide a default configuration that
is a myopic compromise for different use-cases and often leads to sub-optimal
performance on new applications.

Automated algorithm configuration can alleviate users from the burden of
having to manually configure an algorithm and exceeds human performance in

? Equal Contribution

2 Shala et al.

a wide variety of domains [7, 27, 43, 42, 5, 29]. One shortcoming, however, is
that the learned configuration is static. In practice, many algorithms are of an
iterative nature and might require different parameter configurations at different
stages of their execution. In evolutionary algorithms this kind of “parameter
control” is often achieved through so-called self-adaptive mechanisms [9, 34, 2].
Based on some statistics of the algorithm’s behavior, self-adaptation adjusts the
parameter on-the-fly and thereby directly influences the algorithm’s execution.

Similarly in the well-known CMA-ES [19] the step-size is adapted based on
the observed evolution path by a handcrafted heuristic, called CSA [25]. Through
this step-size control, CMA-ES is able to avoid premature convergence of the
population [21]. However, designing heuristics to adapt not only over a time-
horizon but also to the task at hand is more difficult than to simply expose the
parameters and configure them at every step.

In this work, we aim to strike a balance between self-adaptive mechanisms
and automated algorithm configuration by making use of dynamic algorithm
configuration (DAC) [10]. Instead of only learning the optimal initial step-size
and adapting that by a handcrafted heuristic throughout the run of the algo-
rithm, we learn a DAC policy in a fully automatic and data-driven way that
determines how the step-size should be adjusted during the CMA-ES execution.

To learn DAC policies, we make use of guided policy search (GPS) [37],
a commonly used reinforcement learning (RL) technique, originating from the
robotics community, capable of learning complex non-linear policies from fairly
few trials. Our choice for this particular method was motivated by its capability
to learn simple first-order optimizers from scratch [39]. An appealing feature
of GPS is that it allows us to employ known adaptation schemes as teacher
mechanism to warm-start the search. This learning paradigm allows the agent
to simply imitate the teacher if it was already optimal for a specific problem,
while learning to do better in areas where the teacher struggled to perform well.

We study the potential of this DAC approach to step-size adaptation in
CMA-ES for a variety of black-box optimization problems. One important open
question so far is how such data-driven approaches can generalize to different
settings (e.g., longer optimization runs, higher-dimensional problems or different
problem classes) that were not observed during training. More specifically, our
contributions are:

1. We address the problem of learning step-size control for CMA-ES from a
reinforcement learning perspective;

2. We propose how to model the state space, action space and reward function;

3. To use guided policy search for learning a DAC policy in efficient way, we
propose to use a strong teacher guidance.

4. We empirically demonstrate that our learned DAC policies are able to out-
perform CMA-ES’ handcrafted step-size adaptation;

5. We demonstrate the generality of our DAC approach by transferring the
learned policies to (i) functions of higher dimensions, (ii) unseen test function
and (iii) to a certain degree to longer optimization trajectories.

Learning Step-Size Adaptation in CMA-ES 3

2 Related Work

Parameter Control using Reinforcement Learning The potential generality of
DAC via RL is widely recognized [33, 1, 10] and RL has been applied to various
specific parameter control settings [45, 46, 12, 15, 49, 8, 18, 33, 51]. However, RL
covers a wide variety of techniques, and our methodology differs from prior-art in
the area, in two important ways. First, GPS learns configuration policies offline,
while most previous research considers the online setting. They attempt to learn
how to adapt the parameters of an algorithm “while it is being used”, i.e. without
separate training phase. While desirable, online learning introduces a challenging
exploration-exploitation trade-off. Also, experience is typically not transferred
across runs, similar to hand-crafted adaptation mechanisms. That being said,
prior-art considering the offline setting does exist, e.g., Battiti et al. [8] for local
search SAT solvers and Sharma et al. [51] for EA. Second, GPS belongs to
the family of policy search methods, which are often able to handle partially
observable state spaces and continuous actions spaces better than previously
used value-based RL methods.

Black-Box Dynamic Algorithm Configuration In a sense, our methodology more
closely resembles static algorithm configuration (AC) than traditional RL ap-
proaches. We represent configuration policies as a neural network; and as in AC,
train it offline. Instead of GPS, black-box optimizers, e.g. ES, could also be used
to optimize these weights [31, 50, 17]. In fact, prior-art exists that performs
DAC using static AC methods [35, 3, 6, 32]. A limitation of these “black-box”
approaches is that they are unaware of the dynamic nature of the problem [1],
e.g. which configurations where used at each time step, and how this affected
execution. As a consequence, they are not sample-efficient, and practical appli-
cations with long trajectories are forced to consider restrictive policy spaces.

Learning to Optimize in Machine Learning Learning to Learn (L2L) is a form of
meta-learning, aiming to use machine learning methods to learn better machine
learning systems [53]. Research in the area has recently surged in popularity,
resulting in various applications learning better neural network architectures [57,
41], hyper-parameters [44], initialization [16], and optimizers [4, 13, 11, 39, 56,
14]. As we are learning a component of an optimizer, our work is closely related
to Learning to Optimize (L2O). Note that most L2O research [4, 39, 56, 14]
focuses on learning better gradient-based methods (e.g. Adam [36]), as these are
most commonly used to optimize neural networks. Notable exceptions are L2O
applications to single-point [13] and multi-point [11] black-box optimization. One
L2O approach [13, 4, 11] models iterative optimizers as a kind of recurrent neural
network and trains it in a fully supervised fashion. More general RL methods
have also been used in L2O, e.g. REPS [14], PPO [56], and GPS [39]. In this
work, we apply GPS in a similar way. The main difference is that, instead of
learning a simple first-order optimization method from scratch, we apply this
method to dynamically configure a single parameter (step-size) in a state-of-the-
art derivative-free method (CMA-ES).

4 Shala et al.

3 Background on CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [24] is an evolu-
tionary algorithm optimizing a continuous black-box function f : IRn → IR by
sampling individuals from a non-stationary multivariate normal search distri-

bution N
(
m(g), σ(g)2

C(g)
)

, with mean m(g) (center), step-size σ(g) (scale) and

covariance matrix C(g) (shape).
Initially, C(0) = I (identity matrix) and m(0), σ(0) are provided by the user.

The algorithm then iteratively updates this search distribution to increase the
probability of sampling successful individuals. Each generation g, CMA-ES first

samples λ individuals x
(g+1)
1 , ..., x

(g+1)
λ and chooses the best µ points as the

parents of generation g+1. Then CMA-ES shifts the mean by a weighted average
of µ selected steps:

m(g+1) = m(g) + cm

µ∑
i=1

wi

(
x

(g+1)
i:λ −m(g)

)
. (1)

where xi:λ denotes the i-th best point in terms of the function value and cm
is a learning rate which is usually set to 1. Next, covariance matrix adaptation
is performed, which amounts to learning a second order model of the underly-
ing objective function. To control the step-size CMA-ES uses Cumulative Step
Length Adaptation (CSA) [21]:

σ(g+1) = σ(g)exp

(
cσ
dσ

(
||p(g+1)

σ ||
E||N (0, I)|| − 1

))
, (2)

where cσ < 1 is the learning rate, dσ ≈ 1 is the damping parameter, and

p
(g+1)
σ ∈ Rn is the conjugate evolution path at generation g+1 :

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeffC

(g)− 1
2
m(g+1) −m(g)

σ(g)
. (3)

Note that alternatives for CSA have been proposed, e.g. making use of a
success rule [30] or facilitate two-point step-size adaptation [20]. More generally,
further research has resulted in many variants of CMA-ES suitable for a variety
of different problems. A highly modular framework [48] exists that enables easy
choice between 4 608 different versions of CMA-ES. This framework has further
been used to demonstrate that, theoretically, switching only once during a run
between configurations can yield performance improvements [47]. Simply using
the switching rules proposed therein did not yield robust results in practice, but
could be improved upon to yield better results [55].

4 Learning Step-Size Adaptation

In this section, we will first discuss how we can model the adaptation of the step-
size of CMA-ES as a dynamic algorithm configuration problem and propose to
use guided policy search to efficiently find well-performing step-size policies.

Learning Step-Size Adaptation in CMA-ES 5

(0)

RL agent

environment (E)

reward signal (R) dynamics (T)

internal state
Φ

reset to initial condition i Є I

take action a Є A

observe external state s Є S

observe reward r Є ℝ

covariance matrix
adaptation

- full memory state of CMA-ES
- additional search trajectory statistics

step-size
adaptation

o�spring
generation

�tness
evaluation

adaptation of
the mean

At training time (o�ine)
executes Guided Policy Search
to learn policy S A

At test time (online)
executes the learned policy current objective value

choose step-size σ Є ℝ+

start CMA-ES with
- objective function f
- initial mean m
- initial step-size σ
- population size 10
- default parameters

(0)

- 40 last step-size values
- 40 last objective value changes
- current cumulative path length

general (observable)
general (hidden)
application-speci�c

Fig. 1: Interaction of the RL agent with CMA-ES.

4.1 The General Objective

The general objective is to adjust step-size σ(g+1) for generation g + 1 based on
some state information sg on how CMA-ES behaved so far. To achieve that, a
probabilistic policy π is responsible for the adjustment:

σ(g+1) ∼ π(sg) (4)

Along the lines of DAC, we further say that a policy should not only perform
well on a single function f , but generalize to many functions f ∈ F . Note that the
policy must not only depend on features of the search trajectory, but could also
be enriched by context information about the function at hand. This allows the
policy to easily distinguish between different functions and their characteristics.

Dynamic algorithm configuration allows us to minimize an arbitrary cost
function c : Π × F → R that defines how well our algorithm, here CMA-ES,
performed by using a policy π ∈ Π on a function f ∈ F . Therefore, our objective
is to find a policy π∗ that optimally adjusts σ across a set of functions4:

π∗ ∈ arg min
π∈Π

∑
f∈F

c(π, f) (5)

4.2 Defining the Components

Having formally described the specific DAC problem at hand, we need to define
all the components to apply reinforcement learning (RL) for solving it. In general,
the RL paradigm [52] allows learning a policy π mapping observations Φ(s′) ∈ S
of an internal state s′ ∈ S′ to actions A by optimizing some reward signal R

4 We assume that the cost function is well-defined such that an optimal policy exists.

6 Shala et al.

induced by transitions T : S′ ×A→ S′. So, to solve our DAC problem for step-
size adaptation in CMA-ES via RL, we need to define our problem as 〈S,A, T,R〉,
where T is implicitly given by the dynamics of CMA-ES; see Figure 1.

The Step-Size Domain and the Action Space. In principle, the step-size param-
eter of CMA-ES is a positive, continuous scalar that needs to be adjusted by π.
For this, we have two options: (i) discretizing it or (ii) directly optimizing in a
continuous domain, which will represent the action space for our RL approach.
We argue that the first option is not desirable, as a too fine grid might lead to a
large action space with many potentially irrelevant choices; whereas a too coarse
grid might not contain all relevant choices. Hence, we model A as the continuous
domain of the step size parameter.

State Representation of CMA-ES. To enable DAC for the step-size, it is crucial
that S encodes sufficient information about the CMA-ES run. Given that our
aim is to learn from, and possibly improve over, the performance of CSA for
step-size control, we encode the information CSA uses in the state. Additionally,
we include information on the optimization process by keeping a history of a
fixed number h of past step-size values (in our experiments, h = 40) and past
objective values. Specifically, our chosen state description contains:

1. the current step-size value σ(g) (see Equation 2)

2. the current cumulative path length p
(g)
σ (see Equation 2)

3. the history of changes in objective value (i.e. the differences between succes-
sive objective values from h previous iterations)

4. the step-size history from h previous iterations5

The Cost Function and the Reward. The overall objective of CMA-ES is to find
the minimizer of a function f at hand. So, we can say that the cost function
should directly reflect the function value found by CMA-ES. Because the opti-
mization budget (e.g., the number of allowed function evaluations) is not always
known beforehand, we argue that it is desired to optimize for any-time perfor-
mance. Since RL maximizes a cumulative reward over time, we can simply define
the reward function per step (i.e. generation) as the negative function value of
the current incumbent. By doing that, we optimize for any-time performance.

4.3 Using Guided Policy Search for Efficient Learning of the Policy

Prior work showed [49, 51] that value-based RL can be used for learning a DAC
policy. However, this approach is typically not very sample-efficient, making it a
very expensive approach in general. For example, Biedenkapp et al. [10] needed
more than 10 000 algorithm runs to learn a simple sigmoid function.

A key insight of our work is that RL does not need to learn a well-performing
policy from scratch but can use existing self-adaptive heuristics as a teacher.

5 When such a long history is not available yet, the missing values are filled with zeros.

Learning Step-Size Adaptation in CMA-ES 7

Here, for example, we propose to use CSA as a teacher to learn a policy that
either imitates or improves upon it. In addition to better learning stability of
the policy, we will show in our experiments that learning a policy for step-size
adaptation is comparably cheap by using less than 1 000 runs of CMA-ES.

Similar to Li and Malik [39] in learning to optimize, we propose to use guided
policy search (GPS) under unknown dynamics [37] to learn step-size policies. In
essence GPS learns arbitrary parameterized policies through supervised learning
by fitting a policy to guiding trajectories [38, 37]. From teaching trajectories, a
teacher distribution is computed such that it maximizes the reward and the
agreement with the current policy. The policy parameters are then updated in a
supervised fashion such that new sample trajectories produced by the policy do
not deviate too far from the teacher. For a detailed explanation we refer to [37].

4.4 Extending GPS-based DAC by a Stronger Teacher

For our purposes, we initialize the teacher to fit trajectories generated by CMA-
ES with CSA. This initial teacher thus closely resembles CSA. As GPS updates
the teacher over time to improve the reward, the teacher is likely to move away
from CSA over time as only student and teacher are constrained to stay close
to each other. If both teacher and student stray too far from CSA, the learned
policy might not be able to recover CSAs behaviour in cases where it is beneficial.
Thus we would like to encourage the student policy to also continually learn from
CSA, to gain a more diverse teaching experience.

Instead of restricting the student policies through hard divergence criterion
to not go too far away from CSA, we propose to add additional sample trajec-
tories from running CMA-ES with CSA and not only the teacher to train the
student policy. Thereby CSA acts as an additional fixed teacher. We extend GPS
by introducing a sampling rate to determine the fraction of sample trajectories
obtained from CSA when training the policy. Finally, in order to ensure explo-
ration during learning, the initial step-size values and values for the mean of the
initial distribution for the functions in the training set are randomly sampled
from a uniform distribution.

5 Experiments

In this section we empirically evaluate the effectiveness of our proposed approach.
We demonstrate the ability of our policies to generalize to new settings.

5.1 Setup

For guided policy search we used the implementation provided by Li and Ma-
lik [39]. We incorporated our policy6 in the python version of CMA-ES (pycma)
in version 2.7.0 [22]. We only optimized the step-size adaptation with our ap-
proach and left all other pycma parameters as specified by the default, except we

6 Code and trained policies available at https://github.com/automl/LTO-CMA

https://github.com/automl/LTO-CMA

8 Shala et al.

100 200 300 400500

Num FEval

−100

0

100

200

300
O

b
je

ct
iv

e
V

al
u

e

Rastrigin

CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(a)

100 200 300 400500

Num FEval

−2000

0

2000

4000

6000

8000

10000

O
b

je
ct

iv
e

V
al

u
e

Schwefel
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(b)

Fig. 2: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our methods incumbent policy after 1, 5, 10 and 15 training iterations
on the Rastrigin function (a) and the Schwefel function (b).

used a fixed population size of 10. As functions, we used a representative set with
different characteristics as introduced by Hansen et al. in the BBOB-2009 [23].

We used 10 runs of SMAC [28, 40] to tune the initial step-size of CSA for each
of the 10 considered BBOB functions individually, giving us a strong baseline.
On the unseen functions we used an initial step-size of 0.5. In all experiments
we used the same initial step-size for both our method and the baseline.

We trained our step-size policy for 50 steps (i.e. generations) of CMA-ES.
We model the policy as a neural network consisting of two hidden layers with 50
hidden units each and ReLU activations. During training, the trajectory samples
are obtained from the teaching policy with a probability of 0.7, whereas with a
probability of 0.3 we sample trajectories from running CMA-ES with CSA. We
obtain the final policy after training for 15 iterations of GPS.

We show performance comparisons of CMA-ES with the learned policy for
step-size adaptation and CMA-ES with CSA from 25 independent runs of each
method. The tables show an estimate of how likely it is for our learned policy to
outperform CSA, based on pairwise comparisons of final objective values from
the 25 runs for each method. The online appendix7 describes this metric in detail,
including its relation to statistical significance8.

5.2 Function-Specific Policy

Comparison against our Teacher CSA We begin by exploring our method’s abil-
ity to learn step-size policies when trained on a single 10D function for which
we sampled 18 different starting points. In each training iteration of GPS, we
evaluated CMA-ES 5 times on all starting conditions. In most cases, we already
learn a well performing policy after 10 training iterations, which amounts only

7 https://ml.informatik.uni-freiburg.de/papers/20-PPSN-LTO-CMA.pdf
8 Estimates ≥ 0.64 =⇒ our learned policy significantly outperformed CSA (α = 0.05)

https://ml.informatik.uni-freiburg.de/papers/20-PPSN-LTO-CMA.pdf

Learning Step-Size Adaptation in CMA-ES 9

Sampling Rate
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BentCigar 0.53 0.84 0.46 0.96 0.38 0.33 0.14 0.26 0.25 0.08
Discus 0.00 0.66 0.23 0.74 0.34 0.35 0.30 0.37 0.29 0.32
Ellipsoid 0.59 0.97 0.51 0.97 0.51 0.48 0.35 0.48 0.56 0.44
Katsuura 0.64 0.91 0.66 0.96 0.64 0.63 0.63 0.64 0.64 0.61
Rastrigin 0.81 0.94 0.83 1.00 0.97 0.87 0.79 0.85 0.79 0.80
Rosenbrock 0.67 0.28 0.43 0.89 0.61 0.17 0.12 0.51 0.57 0.22
Schaffers 0.75 0.68 0.87 0.78 0.92 0.98 0.45 0.57 0.90 0.94
Schwefel 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sphere 0.77 0.92 0.48 0.78 0.58 0.25 0.94 0.99 0.93 0.94
Weierstrass 0.35 1.00 0.54 1.00 0.32 0.52 0.58 0.52 0.49 0.42

Average 0.60 0.82 0.60 0.91 0.63 0.56 0.53 0.62 0.64 0.58

Table 1: Probability of our method to outperform the baseline when training with
different sampling rates. 1.0 indicates that we always outperform the baseline and
0.0 indicates we are always outperformed. The best sampling rate per function
are marked in bold.

to 18×5×10 = 900 runs of CMA-ES. Figure 2 depicts the training performance
of our learned step-size policy after 1, 5, 10 and 15 training iterations of GPS on
the Rastrigin and Rosenbrock functions. From Figure 2a we can see that even
though our policy starts out with samples from the default step-size adaptation
of CMA-ES, already after one iteration, the learned policy can outperform the
hand-crafted baseline. After four more training steps, our learned policy contin-
ues improving and still outperforms CSA. Finally when having trained for 15
iterations, our learned policy readily outperforms CSA, leading not only to a
much better final performance, but also to a much better anytime performance
on the Rastrigin function. We observe a similar behaviour when training on the
Schwefel function, but the learned policy does not drastically outperform CSA.

Studying the Sampling Rate We further used this setting to determine the influ-
ence of training length and sampling rate on the final performance of our policies,
see Table 1. The sampling rate is crucial for our method as it determines how
similar the learned policy’s behavior is to CSA.

The performance of the learned policy improved by introducing sample tra-
jectories from CSA compared to only sampling from the time-varying linear
Gaussian teacher. Results on some functions are more strongly affected by this
change, e.g. BentCigar, than others, such as Schwefel. The final row shows the
average performance of the sampling rate over all 10 considered training func-
tions. Further, it becomes apparent that a sampling rate of 0.3 results in the
strongest performance of our method, indicating that sampling also from our de-
fault teacher can improve performance. As a conclusion of this meta-parameter
study, we will use 0.3 for our following experiments on generalization.

10 Shala et al.

Trajectory Length
50 100 150 200 250 500 1000

BentCigar 0.89 0.00 0.00 0.00 0.00 0.05 0.04
Discus 0.90 0.95 0.76 0.40 0.00 0.00 0.00
Ellipsoid 0.94 0.92 0.90 0.86 0.61 0.00 0.00
Katsuura 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rastrigin 1.00 0.81 0.80 0.83 0.92 0.73 0.74
Rosenbrock 0.93 0.77 0.78 0.90 0.62 0.24 0.04
Schaffers 0.60 0.55 0.40 0.39 0.48 0.39 0.57
Schwefel 0.99 0.52 0.76 0.79 0.87 0.84 0.65
Sphere 0.89 0.00 0.00 0.00 0.00 0.00 0.00
Weierstrass 0.97 0.97 0.89 0.92 1.00 1.00 1.00

Average 0.91 0.65 0.63 0.61 0.55 0.43 0.40

(a) Different Trajectory Lengths

Dimensions
35 40 45 50 55 60

0.87 0.98 0.56 0.49 0.76 1.00
0.89 0.86 0.93 0.94 0.94 0.97
1.00 1.00 1.00 1.00 1.00 1.00
0.92 0.92 0.96 1.00 0.96 0.87
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.31 0.58 0.78 0.87 0.76 0.74
1.00 0.96 0.96 1.00 1.00 0.98
0.41 0.38 0.56 0.65 0.64 0.72
0.97 1.00 0.95 1.00 1.00 0.93

0.84 0.87 0.87 0.89 0.91 0.92

(b) Different # Dimensions

Table 2: Probability of our method to outperform the baseline (a) for varying
trajectory lengths, when having only trained with trajectories of length 50, and
(b) for different dimensions when training them on functions of dimension 5−30
and applying the learned policies to functions of dimensionality > 30.

Generalization to Longer Trajectory Length Finally, in this setting we explore
the capability of the agent to transfer to longer trajectories. During training we
opted to limit the training samples to be of maximal length 50, which corre-
sponds to 500 function evaluations, to keep the cost for training low. Naturally
the question thus arises if it is possible to further make use of such policies on
longer optimization trajectories. From Table 2a we can observe that, even if a
policy is trained with trajectories of at most 500 function evaluations, the poli-
cies are generally capable of generalizing to optimization trajectories that are
5 times longer while struggling to generalize to even longer trajectories.9 On
functions where the learned policies perform very well, only a small performance
decrease is noticeable over a longer trajectory. On other functions the final per-
formance lacks behind that of the handcrafted baseline over longer optimization
trajectories, whereas on Weierstrass, the opposite is the case. On average, we
can observe a decline in final performance of our learned policy, the further the
optimization trajectory length is from the one used originally for training. A
limiting factor as of yet is scaling the training to much longer trajectories. With
increased trajectory length more training iterations will be needed to learn well
performing policies.

5.3 Function-Class Specific Policy

We are generally not interested in policies that are only of use for one specific
function; a more desirable policy would be capable of handling a broader range

9 The learned policies outperform CSA on anytime performance as shown in the Ap-
pendix, but CSA is better in terms of end objective values.

Learning Step-Size Adaptation in CMA-ES 11

100 200 300 400500

Num FEval

40

60

80

100

120

O
b

je
ct

iv
e

V
al

u
e

GallaghersGaussian21hi
CSA

LTO

(a)

100 200 300 400500

Num FEval

0

200

400

600

800

1000

O
b

je
ct

iv
e

V
al

u
e

SharpRidge
CSA

LTO

(b)

Fig. 3: Optimization trajectories of CMA-ES using CSA (blue) and our learned
policy on two prior unseen test functions. The solid lines depict the mean per-
formance and the shaded area the standard deviation over 25 repetitions.

of functions. As a first step, we are interested in generalizing to similar functions
of a specific function class. A very interesting, yet challenging task is hereby
to generalize to higher dimensions. For this purpose we trained our policies on
functions of dimension 5− 30 and evaluated them on dimensions 35− 60.

From Table 2b we can see that with increasing dimensionality, the probability
that our policies outperform the handcrafted baseline actually increases. Upon
inspection of the results, we see that with increasing dimensionality, the baseline
optimization trajectories need more and more generations before reaching a good
performance. Similarly, with increase in dimensionality, optimization trajectories
guided by our policies require more generations to reach good final performances,
however they are less affected by the dimensionality than the baseline. Especially
on functions like Rosenbrock or Ellipsoid this effect seems to be very strongly
pronounced. We can observe this trend for both training and testing our policies
(see appendix for results on training).

5.4 Generalization to New Functions

Policies scaling to higher dimensions already promise great generalization capa-
bility. However, in practice, the problems, to which a solver is applied, could
be fairly heterogeneous. To look into a more realistic scenario, we trained our
agent on the 10 black-box functions we have mentioned before and assess its
generalization capability on 12 black-box functions unseen during training.

Figure 3 shows two exemplary optimization trajectories that are achievable
with our learned policies, compared to that of the default CSA. On Gallhager’s
Gaussian 21-hi we see that the optimization trajectory of CMA-ES with our
learned policy closely resembles that of the handcrafted baseline as the step-sizes
follow the same trend, see Figure 3a. On SharpRidge (Figure 3b) the learned
policy is able to find well performing regions quicker; however in the end the
baseline catches up.

12 Shala et al.

C
om

po
si
te

-

G
ri
ew

an
k-

R
os

en
br

oc
k

Lin
ea

rS
lo
pe

A
tt
ra

ct
iv
eS

ec
to

r

R
os

en
br

oc
k-

R
ot

at
ed

Lun
ac

ek

B
i-
R
as

tr
ig
in

D
iff

er
en

tP
ow

er
s

St
ep

E
lli

ps
oi
da

l

Sc
ha

ffe
rs
-

Il
lC

on
di

ti
on

ed

G
al
la
gh

er
’s
-

G
au

ss
ia
n1

01
-m

e

B
ue

ch
eR

as
tr
ig
in

Sh
ar

pR
id

ge

G
al
la
gh

er
’s
-

G
au

ss
ia
n2

1-
hi

0

0.5

1
1 1 1

0.87 0.84 0.8
0.63 0.58 0.58 0.56 0.52

0.33

p
(π
≤
C
S
A

)

Transfer to Unseen Functions

Fig. 4: Probability of our learned policies outperforming the default baseline on
prior unseen test functions when training on all 10 BBOB functions.

Figure 4 summarizes the result for all 12 test functions. On 6 out of the 12
test functions, the learned policy significantly (≥ 0.64, α = 0.05) outperformed
the baseline, while being significantly outperformed (≤ 0.36) on one.

6 Conclusion

We demonstrated that we can automatically learn policies to dynamically config-
ure the mutation step-size parameter of CMA-ES using reinforcement learning.
To the best of our knowledge, we are the first to use policy search for the dynamic
configuration of evolutionary algorithms, rather than value-based reinforcement
learning. In particular, we described how guided policy search can be used to
learn configuration policies, starting from a known handcrafted default policy.
We conducted a comprehensive empirical investigation, and observed that (i) the
learned policies are capable of outperforming the default policy on a wide range
of black-box optimization problems; (ii) using a fixed teacher can further improve
the performance; (iii) our learned policies can generalize to higher dimensions
as well as to unseen functions.

These results open the door for promising future research in which pol-
icy search is used to learn policies that jointly configure multiple parameters
(e.g. population and step-size) of CMA-ES. Another line of future research could
improve the employed policy search mechanism, e.g. by learning from a variety
of teachers at the same time. A more diverse set of teachers, might facilitate
even better generalization as the learned policies could make use of strengths
of individual teachers on varying problem domains. Finally, the development
of a benchmark platform for dynamic algorithm configuration would facilitate
apple-to-apple comparisons of different reinforcement learning techniques, driv-
ing future research.

Acknowledgements. The authors acknowledge funding by the Robert Bosch
GmbH.

Bibliography

[1] Adriaensen, S., Nowé, A.: Towards a white box approach to automated
algorithm design. In: Kambhampati, S. (ed.) Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’16). pp. 554–560
(2016)

[2] Aleti, A., Moser, I.: A systematic literature review of adaptive parameter
control methods for evolutionary algorithms. ACM Comput. Surv. 49(3),
56:1–56:35 (2016)

[3] Andersson, M., Bandaru, S., Ng, A.H.: Tuning of multiple parameter sets in
evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016. pp. 533–540 (2016)

[4] Andrychowicz, M., Denil, M., Colmenarejo, S.G., Hoffman, M.W., Pfau, D.,
Schaul, T., de Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett,
R. (eds.) Proceedings of the 30th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’16). pp. 3981–3989 (2016)

[5] Ansótegui, C., Malitsky, Y., Sellmann, M.: Maxsat by improved instance-
specific algorithm configuration. In: Brodley, C., Stone, P. (eds.) Proceed-
ings of the Twenty-eighth National Conference on Artificial Intelligence
(AAAI’14). pp. 2594–2600. AAAI Press (2014)

[6] Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.: Reactive dialectic search
portfolios for maxsat. In: S.Singh, Markovitch, S. (eds.) Proceedings of the
Conference on Artificial Intelligence (AAAI’17). AAAI Press (2017)

[7] Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm
for the automatic configuration of algorithms. In: Gent, I. (ed.) Proceed-
ings of the Fifteenth International Conference on Principles and Practice
of Constraint Programming (CP’09). Lecture Notes in Computer Science,
vol. 5732, pp. 142–157. Springer (2009)

[8] Battiti, R., Campigotto, P.: An investigation of reinforcement learning for
reactive search optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.)
Autonomous Search, pp. 131–160. Springer (2012)

[9] Battiti, R., Brunato, M., Mascia, F.: Reactive search and intelligent opti-
mization, vol. 45. Springer Science & Business Media (2008)

[10] Biedenkapp, A., Bozkurt, H.F., Eimer, T., Hutter, F., Lindauer, M.: Dy-
namic Algorithm Configuration: Foundation of a New Meta-Algorithmic
Framework. In: Lang, J., Giacomo, G.D., Dilkina, B., Milano, M. (eds.)
Proceedings of the Twenty-fourth European Conference on Artificial Intel-
ligence (ECAI’20) (Jun 2020)

[11] Cao, Y., Chen, T., Wang, Z., Shen, Y.: Learning to optimize in swarms.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019,
(NeurIPS’19). pp. 15018–15028 (2019)

14 Shala et al.

[12] Chen, F., Gao, Y., Chen, Z., Chen, S.: Scga: Controlling genetic algorithms
with sarsa (0). In: International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-
IAWTIC’06). vol. 1, pp. 1177–1183. IEEE (2005)

[13] Chen, Y., Hoffman, M., Colmenarejo, S., Denil, M., Lillicrap, T., Botvinick,
M., de Freitas, N.: Learning to learn without gradient descent by gradient
descent. In: Precup, D., Teh, Y. (eds.) Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML’17). vol. 70, pp. 748–756.
Proceedings of Machine Learning Research (2017)

[14] Daniel, C., Taylor, J., Nowozin, S.: Learning step size controllers for ro-
bust neural network training. In: Schuurmans, D., Wellman, M. (eds.)
Proceedings of the Thirtieth National Conference on Artificial Intelligence
(AAAI’16). AAAI Press (2016)

[15] Eiben, A., Horváth, M., Kowalczyk, W., Schut, M.: Reinforcement learning
for online control of evolutionary algorithms. In: Brueckner, S., Hassas, S.,
Jelasity, M., Yamins, D. (eds.) Proceedings of Engineering Self-Organising
Systems (ESOA). Lecture Notes in Computer Science, vol. 4335, pp. 151–
160. Springer (2007)

[16] Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adap-
tation of deep networks. In: Precup, D., Teh, Y. (eds.) Proceedings of the
34th International Conference on Machine Learning (ICML’17). vol. 70, pp.
1126–1135. Proceedings of Machine Learning Research (2017)

[17] Fuks, L., Awad, N., Hutter, F., Lindauer, M.: An evolution strategy with
progressive episode lengths for playing games. In: Kraus, S. (ed.) Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence (IJCAI). pp. 1234–1240. ijcai.org (2019)

[18] Gaspero, L.D., Urli, T.: Evaluation of a family of reinforcement learn-
ing cross-domain optimization heuristics. In: Hamadi, Y., Schoenauer, M.
(eds.) Proceedings of the Sixth International Conference on Learning and
Intelligent Optimization (LION’12). Lecture Notes in Computer Science,
vol. 7219, pp. 384–389. Springer (2012)

[19] Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano,
J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, pp. 75–
102. Springer (2006)

[20] Hansen, N.: CMA-ES with two-point step-size adaptation. arXiv:0805.0231
[cs.NE] (2008)

[21] Hansen, N.: The CMA evolution strategy: A tutorial. arXiv:1604.00772v1
[cs.LG] (2016)

[22] Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on
GitHub. Zenodo, DOI:10.5281/zenodo.2559634 (Feb 2019).
https://doi.org/10.5281/zenodo.2559634, https://doi.org/10.5281/zenodo.
2559634

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634

Learning Step-Size Adaptation in CMA-ES 15

[23] Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Op-
timization Benchmarking 2009: Noiseless Functions Definitions. Research
Report RR-6829, INRIA (2009)

[24] Hansen, N., Ostermeier, A.: Convergence properties of evolution strategies
with the derandomized covariance matrix adaptation: The (µ/µI ,λ)-CMA-
ES. Proceedings of the 5th European Congress on Intelligent Techniques
and Soft Computing p. 650–654 (1997)

[25] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation 9, 159–195 (2001)

[26] Hoos, H.: Programming by optimization. Communications of the ACM
55(2), 70–80 (2012)

[27] Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration of mixed
integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) Pro-
ceedings of the Seventh International Conference on Integration of AI and
OR Techniques in Constraint Programming (CPAIOR’10). Lecture Notes
in Computer Science, vol. 6140, pp. 186–202. Springer (2010)

[28] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimiza-
tion for general algorithm configuration. In: Coello, C. (ed.) Proceedings of
the Fifth International Conference on Learning and Intelligent Optimiza-
tion (LION’11). Lecture Notes in Computer Science, vol. 6683, pp. 507–523.
Springer (2011)

[29] Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown,
K.: The configurable SAT solver challenge (CSSC). Artificial Intelligence
243, 1–25 (2017)

[30] Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-
objective optimization. Evolutionary Computation 15, 1–28 (2001)

[31] Igel, C.: Neuroevolution for reinforcement learning using evolution strate-
gies. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03.
vol. 4, pp. 2588–2595. IEEE (2003)

[32] Kadioglu, S., Sellmann, M., Wagner, M.: Learning a reactive restart strategy
to improve stochastic search. In: International Conference on Learning and
Intelligent Optimization. pp. 109–123. Springer (2017)

[33] Karafotias, G., Eiben, A., Hoogendoorn, M.: Generic parameter control with
reinforcement learning. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation. pp. 1319–1326 (2014)

[34] Karafotias, G., Hoogendoorn, M., Eiben, Á.: Parameter control in evolution-
ary algorithms: Trends and challenges. IEEE Trans. Evolutionary Compu-
tation 19(2), 167–187 (2015)

[35] Karafotias, G., Smit, S., Eiben, A.: A generic approach to parameter control.
In: European Conference on the Applications of Evolutionary Computation.
pp. 366–375. Springer (2012)

[36] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In:
Proceedings of the International Conference on Learning Representations
(ICLR’15) (2015), published online: iclr.cc

[37] Levine, S., Abbeel, P.: Learning neural network policies with guided policy
search under unknown dynamics. In: Ghahramani, Z., Welling, M., Cortes,

iclr.cc

16 Shala et al.

C., Lawrence, N., Weinberger, K. (eds.) Proceedings of the 28th Interna-
tional Conference on Advances in Neural Information Processing Systems
(NeurIPS’14). pp. 1071–1079 (2014)

[38] Levine, S., Koltun, V.: Guided policy search. In: Dasgupta, S., McAllester,
D. (eds.) Proceedings of the 30th International Conference on Machine
Learning (ICML’13). pp. 1–9. Omnipress (2013)

[39] Li, K., Malik, J.: Learning to optimize. In: Proceedings of the International
Conference on Learning Representations (ICLR’17) (2017), published on-
line: iclr.cc

[40] Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A.,
Hutter, F.: SMAC v3: Algorithm configuration in Python. https://github.
com/automl/SMAC3 (2017)

[41] Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search.
In: Proceedings of the International Conference on Learning Representa-
tions (ICLR’19) (2019), published online: iclr.cc

[42] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Tech. rep.,
IRIDIA, Université Libre de Bruxelles, Belgium (2011), http://iridia.ulb.
ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

[43] López-Ibáñez, M., Stützle, T.: Automatic configuration of multi-objective
ACO algorithms. In: Dorigo, M., M-Birattari, Caro, G.D., Doursat, R., En-
gelbrecht, A.P., Floreano, D., Gambardella, L., Groß, R., Sahin, E., Sayama,
H., Stützle, T. (eds.) Proceedings of the Seventh International Conference
on Swarm Intelligence (ANTS’10). pp. 95–106. Lecture Notes in Computer
Science, Springer (2010)

[44] Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparame-
ter optimization through reversible learning. In: Bach, F., Blei, D. (eds.)
Proceedings of the 32nd International Conference on Machine Learning
(ICML’15). vol. 37, pp. 2113–2122. Omnipress (2015)

[45] Muller, S., Schraudolph, N., Koumoutsakos, P.: Step size adaptation in evo-
lution strategies using reinforcement learning. In: Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600).
vol. 1, pp. 151–156. IEEE (2002)

[46] Pettinger, J., Everson, R.: Controlling genetic algorithms with reinforce-
ment learning. In: Proceedings of the 4th Annual Conference on Genetic
and Evolutionary Computation. pp. 692–692 (2002)

[47] van Rijn, S., Doerr, C., Bäck, T.: Towards an adaptive CMA-ES configura-
tor. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L.,
Whitley, L.D. (eds.) Proceedings of the 15th International Conference on
Parallel Problem Solving from Nature (PPSN’18). Lecture Notes in Com-
puter Science, vol. 11101, pp. 54–65. Springer (2018)

[48] van Rijn, S., Wang, H., van Leeuwen, M., Bäck, T.: Evolving the structure
of evolution strategies. In: 2016 IEEE Symposium Series on Computational
Intelligence (SSCI). pp. 1–8. IEEE (2016)

[49] Sakurai, Y., Takada, K., Kawabe, T., Tsuruta, S.: A method to control
parameters of evolutionary algorithms by using reinforcement learning. In:

iclr.cc
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3
iclr.cc
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

Learning Step-Size Adaptation in CMA-ES 17

Proceedings of the Sixth International Conference on Signal-Image Tech-
nology and Internet Based Systems. pp. 74–79. IEEE (2010)

[50] Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a
scalable alternative to reinforcement learning. arXiv:1703.03864 [stat.ML]
(2017)

[51] Sharma, M., Komninos, A., López-Ibáñez, M., Kazakov, D.: Deep reinforce-
ment learning based parameter control in differential evolution. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference. pp. 709–717
(2019)

[52] Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT
press (2018)

[53] Thrun, S., Pratt, L.: Learning to learn. Springer Science & Business Media
(2012)

[54] Verdooren, L.: Extended tables of critical values for wilcoxon’s test statistic.
Biometrika 50(1-2), 177–186 (1963)

[55] Vermetten, D., van Rijn, S., Bäck, T., Doerr, C.: Online selection of CMA-
ES variants. In: Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’19). pp. 951–959. ACM
(2019)

[56] Xu, Z., Dai, A.M., Kemp, J., Metz, L.: Learning an adaptive learning rate
schedule. arXiv:1909.09712 [cs.LG] (2019)

[57] Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning.
In: Proceedings of the International Conference on Learning Representa-
tions (ICLR’17) (2017), published online: iclr.cc

iclr.cc

Supplementary Material for:
Learning Step-Size Adaptation in CMA-ES

Gresa Shala1, André Biedenkapp1, Noor Awad1, Steven Adriaensen1,
Marius Lindauer2, and Frank Hutter1,3

1 University of Freiburg, Germany
2 Leibniz University Hannover, Germany
3 Bosch Center for Artificial Intelligence

A Available Software and Trained Policies

To enable other researchers to use our code, as well as trained models both are
publicly available at https://github.com/automl/LTO-CMA. All scripts used
to generate and plot our results, as well as the logged data are provided in
the repository. Further, we provide examples of how to use our trained policy
networks with the python version of CMA-ES (pycma) in version 2.7.0.

B Influence of Different Reward Scales

A drawback of prior methods of dynamic algorithm configuration through model-
free RL is the need to learn the value function to find a well performing policy.
With such value-based approaches learning across environments with very dif-
ferent reward scales is more challenging than with guided policy search, since
the value function and therefore the policy can quickly be dominated by an envi-
ronment with a large reward scale. Guided policy search on the other hand does
not learn a value function to determine a well performing policy. GPS rather
makes use of the reward signal to determine in which direction a better final
reward can be achieved. On each condition it optimizes trajectory controllers
individually with respect to reward and then learns policies that are similar to
those teaching trajectories. Thus the learning policy is not influenced by differ-
ent reward scales and simply learns to imitate teachers that were optimized for
each function individually.

C Experimental Setup

We evaluated our approach on a compute cluster with nodes equipped with two
Intel Xeon Gold 6242 32-core CPUs, 20 MB cache and and 188GB (shared) RAM
running Ubuntu 18.04 LTS 64 bit.

Function Specific Policy For each of the 10 BBOB functions, we trained the poli-
cies on a set of 18 conditions consisting of the same function, but with different
initialization values for the mean and step-size of CMA-ES.

https://github.com/automl/LTO-CMA

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 19

Function Class Specific Policy For each of the 10 BBOB functions, we trained
the policies on a set of 48 conditions consisting of the same function, but with
different dimensionality(5D, 10D, 15D, 20D, 25D, 30D), initialization values for
the mean and step-size of CMA-ES.

General Policy for BBOB We trained the policy on a set of 80 conditions con-
sisting of 8 conditions for each function with the same dimensionality (10D), but
with different initialization values for the mean and step-size of CMA-ES.

Used Metric We evaluated each method for n runs. To compare the resulting
performance of using our learned policy to that of the handcrafted baseline,
we compared the final performance of each of the 25 runs of our method to
that of the handcrafted baseline. We count how often our method outperforms
the baseline over all comparisons which gives us a probability of our policy π
outperforming the baseline CSA as

p(π < CSA) =

∑n
i

∑n
j 1πi<CSAj

n2
(1)

where 1πi<CSAj
is the indicator function showing if our policy resulted in a lower

final objective value than the baseline when comparing runs i and j.

Statistical Significance: The performance metric used (see Equation 1) can easily
be interpreted statistically as there exists a correspondence between p(π < CSA)
and the ’sum of ranks’ statistic (W) used in the Wilcoxon rank-sum test, i.e.

p(π < CSA) = Wmax−W
Wmax−Wmin

with Wmax = n(3n+1)
2 and Wmin = n(n+1)

2 . As such,
we can use critical values of the test statistic W [54] to derive critical values for
p(π < CSA), allowing us to draw conclusions about the significance of our results
simply by comparing the value of this metric to a fixed threshold. Table C1 gives
these thresholds for different common confidence levels α with n = 25.

p-value < α = 0.1 0.05 0.025 0.01 0.005 0.001

W < 570 552 536 517 505 480
p(π < CSA) ≥ 0.61 0.64 0.67 0.70 0.72 0.76

Table C1: Critical values in terms of W (“sum of ranks” statistic) and p(π <
CSA) (“probability of outperforming” metric) for a single-sided Wilcoxon’s
rank-sum test with null-hypothesis: “CMA-ES with CSA performs at least as
good as with our learned controller π” at different confidence levels α and n = 25.

20 Shala et al.

Sampling Rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BentCigar 0.00 0.00 0.19 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Discus 0.00 0.00 0.00 1.00 0.47 0.06 0.00 0.00 0.00 0.00
Ellipsoid 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
Katsuura 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rastrigin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rosenbrock 1.00 0.60 1.00 1.00 1.00 0.00 0.19 1.00 1.00 0.00
Schaffers 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Schwefel 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Sphere 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
Weierstrass 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

Average 0.40 0.46 0.42 1.00 0.35 0.41 0.42 0.60 0.40 0.40

Table D1: Probability of our approach outperforming CSA, in terms of AUC,
for different dimensions on 10 BBOB functions with different sampling rates.

D Additional Analysis using Area Under the Curve

Here we show results of anytime performance comparisons between our approach
and CSA. The reported results in the tables are computed using the same metric
as described in Section C but we compare the AUC values instead of the final
performance values. Table numbers here correspond to table numbers in the
main paper. Table D1 shows the influence of different sampling rates on the
performance, in terms of AUC, of our approach. This table confirms that also in
terms of anytime performance a low sampling rate of 0.3 seems to perform best
whereas smaller or larger sampling rates are detrimental.

Transfer to Longer Trajectories Table D2 shows the performance of our method
when transferring to higher dimensions as well as to longer optimization tra-
jectories. When transferring to longer optimization trajectories, our policy was
trained for 500 function evaluations, i.e. 50 generations. We can see from Ta-
ble D2a that our method is capable of outperforming the baseline CSA in terms
of anytime performance. When we compare it to Table D2a of the main paper
however we can see that the final performance gets worse, the further the op-
timization trajectory length is from the training setting. Plots in the following
sections of this appendix show that, especially in the early stages of optimiza-
tion, our learned policy very much outperforms the baseline. This early lead
in optimization performance gives our method a much better AUC than the
baseline.

Transfer to Higher Dimensions Table D2b shows the ability to transfer to higher
dimensions, having trained the agent on functions of lower dimensions (i.e. 5D
- 30D). We can see that up to 55D our learned policies AUC seems to be stay
nearly the same. However for 60D the anytime performance becomes worse.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 21

Trajectory Length
50 100 150 200 250 500 1000

BentCigar 0.00 1.00 0.00 1.00 1.00 0.00 0.00
Discus 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ellipsoid 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Katsuura 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rastrigin 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rosenbrock 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Schaffers 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Schwefel 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sphere 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Weierstrass 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.90 1.00 0.90 1.00 1.00 0.90 0.90

(a) Different Trajectory Lengths

Dimensions
35 40 45 50 55 60

0.00 0.00 0.00 0.00 0.28 0.00
1.00 0.00 1.00 1.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 1.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 1.00 1.00 1.00

0.70 0.70 0.60 0.70 0.83 0.50

(b) Different # Dimensions

Table D2: Probability of our method to outperform the baseline (a) for varying
trajectory lengths, when having only trained with trajectories of length 50, and
(b) for different dimensions when training them on functions of dimension 5−30
and applying the learned policies to functions of dimensionality > 30.

This stands in contrast to our analysis in the main paper, using only the final
performance, where with increasing dimensionality we could observe better final
values.

22 Shala et al.

E Performance Comparison across Training Iterations

In this section we provide additional plots for Section 5.2 of the main paper. We
visually compare the performance of our proposed method to the baseline at dif-
ferent iterations of the training process. Figures 1a to 1j depict the performance
of our method after 1, 5, 10 and 15 training iterations as well as the baseline
performance when training only on the respective functions.

100 200 300 400500

Num FEval

0.0

0.5

1.0

1.5

2.0

O
b

je
ct

iv
e

V
al

u
e

×108 BentCigar
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(a)

100 200 300 400500

Num FEval

0

20000

40000

O
b

je
ct

iv
e

V
al

u
e

Discus
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(b)

100 200 300 400500

Num FEval

0

2000000

4000000

6000000

O
b

je
ct

iv
e

V
al

u
e

Ellipsoid
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(c)

100 200 300 400500

Num FEval

214

216

218

220

O
b

je
ct

iv
e

V
al

u
e

Katsuura
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(d)

100 200 300 400500

Num FEval

−100

0

100

200

300

O
b

je
ct

iv
e

V
al

u
e

Rastrigin

CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(e)

100 200 300 400500

Num FEval

0

10000

20000

30000

40000

O
b

je
ct

iv
e

V
al

u
e

Rosenbrock
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(f)

Fig. 1: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our methods incumbent policy after 1, 5, 10 and 15 training iterations
of GPS on 10 BBOB functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 23

100 200 300 400500

Num FEval

−38

−36

−34

−32

−30

−28

O
b

je
ct

iv
e

V
al

u
e

Schaffers
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(g)

100 200 300 400500

Num FEval

−2000

0

2000

4000

6000

8000

10000

O
b

je
ct

iv
e

V
al

u
e

Schwefel
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(h)

100 200 300 400500

Num FEval

−90

−80

−70

−60

−50

O
b

je
ct

iv
e

V
al

u
e

Sphere
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(i)

100 200 300 400500

Num FEval

−260

−250

−240

−230

−220

−210

−200

O
b

je
ct

iv
e

V
al

u
e

Weierstrass
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(j)

Fig. 1: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our methods incumbent policy after 1, 5, 10 and 15 training iterations
of GPS on 10 BBOB functions.

24 Shala et al.

F Sampling Rate

In this section we provide additional plots for Section 5.2 / Table 1 of the main
paper. We visually compare the performance of our proposed method using a
sampling rate of 0.3, vanilla GPS (i.e. sampling rate of 0) and the baseline (i.e.
sampling rate of 1.0). Figure 2 shows the different optimization trajectories of
CMA using the different step-size policies. Figure 3 depicts the corresponding
step-size policies.

100 200 300 400500

Num FEval

0.0

0.5

1.0

1.5

2.0

O
b

je
ct

iv
e

V
al

u
e

×108 BentCigar
CSA

LTO Sampling 0

LTO Sampling 0.3

(a)

100 200 300 400500

Num FEval

0

20000

40000

O
b

je
ct

iv
e

V
al

u
e

Discus
CSA

LTO Sampling 0

LTO Sampling 0.3

(b)

100 200 300 400500

Num FEval

0

2000000

4000000

6000000

O
b

je
ct

iv
e

V
al

u
e

Ellipsoid
CSA

LTO Sampling 0

LTO Sampling 0.3

(c)

100 200 300 400500

Num FEval

214

216

218

220

O
b

je
ct

iv
e

V
al

u
e

Katsuura
CSA

LTO Sampling 0

LTO Sampling 0.3

(d)

100 200 300 400500

Num FEval

0

100

200

300

O
b

je
ct

iv
e

V
al

u
e

Rastrigin

CSA

LTO Sampling 0

LTO Sampling 0.3

(e)

100 200 300 400500

Num FEval

0

10000

20000

30000

40000

O
b

je
ct

iv
e

V
al

u
e

Rosenbrock
CSA

LTO Sampling 0

LTO Sampling 0.3

(f)

Fig. 2: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our method with a sampling rate of 0 and 0.3 on 10 BBOB functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 25

100 200 300 400500

Num FEval

−38

−36

−34

−32

−30

−28

O
b

je
ct

iv
e

V
al

u
e

Schaffers
CSA

LTO Sampling 0

LTO Sampling 0.3

(g)

100 200 300 400500

Num FEval

−2000

0

2000

4000

6000

8000

10000

O
b

je
ct

iv
e

V
al

u
e

Schwefel
CSA

LTO Sampling 0

LTO Sampling 0.3

(h)

100 200 300 400500

Num FEval

−90

−80

−70

−60

−50

O
b

je
ct

iv
e

V
al

u
e

Sphere
CSA

LTO Sampling 0

LTO Sampling 0.3

(i)

100 200 300 400500

Num FEval

−260

−250

−240

−230

−220

−210

−200

O
b

je
ct

iv
e

V
al

u
e

Weierstrass
CSA

LTO Sampling 0

LTO Sampling 0.3

(j)

Fig. 2: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our method with a sampling rate of 0 and 0.3 on 10 BBOB functions.

10 100 200 300 400 500

Num FEval

0.5

1.0

1.5

S
te

p
S

iz
e

BentCigar
CSA

LTO Sampling 0

LTO Sampling 0.3

(a)

10 100 200 300 400 500

Num FEval

0.1

0.2

0.3

0.4

0.5

S
te

p
S

iz
e

Discus

CSA

LTO Sampling 0

LTO Sampling 0.3

(b)

Fig. 3: Step-size adaptation comparison of CSA to that of our learned policies
with a sampling rate of 0 and 0.3 on 10 BBOB functions.

26 Shala et al.

10 100 200 300 400 500

Num FEval

0.5

1.0

1.5

S
te

p
S

iz
e

Ellipsoid
CSA

LTO Sampling 0

LTO Sampling 0.3

(c)

10 100 200 300 400 500

Num FEval

0.25

0.50

0.75

1.00

1.25

S
te

p
S

iz
e

Katsuura
CSA

LTO Sampling 0

LTO Sampling 0.3

(d)

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

Rastrigin
CSA

LTO Sampling 0

LTO Sampling 0.3

(e)

10 100 200 300 400 500

Num FEval

0.00

0.25

0.50

0.75

1.00

1.25

1.50

S
te

p
S

iz
e

Rosenbrock
CSA

LTO Sampling 0

LTO Sampling 0.3

(f)

10 100 200 300 400 500

Num FEval

0.1

0.2

0.3

0.4

0.5

0.6

S
te

p
S

iz
e

Schaffers
CSA

LTO Sampling 0

LTO Sampling 0.3

(g)

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

Schwefel
CSA

LTO Sampling 0

LTO Sampling 0.3

(h)

10 100 200 300 400 500

Num FEval

0.0

0.5

1.0

1.5

S
te

p
S

iz
e

Sphere
CSA

LTO Sampling 0

LTO Sampling 0.3

(i)

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

Weierstrass
CSA

LTO Sampling 0

LTO Sampling 0.3

(j)

Fig. 3: Step-size adaptation comparison of CSA to that of our learned policies
with a sampling rate of 0 and 0.3 on 10 BBOB functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 27

G Transfer to Unseen Test Functions

In this section we provide additional plots for Section 5.4 of the main paper.
In the following plots we show the resulting optimization trajectory (left) when
using the baseline and learned policy (right) on the corresponding function. We
can see that, especially in the beginning, our learned policy learns to use smaller
step-size values than CSA.

100 200 300 400500

Num FEval

−50000

−25000

0

25000

50000

75000

O
b

je
ct

iv
e

V
al

u
e

AttractiveSector
CSA

LTO

(a) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

AttractiveSector
CSA

LTO

(b) Step-Size Policy

100 200 300 400500

Num FEval

100

200

300

400

500

O
b

je
ct

iv
e

V
al

u
e

BuecheRastrigin
CSA

LTO

(c) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

1.2

S
te

p
S

iz
e

BuecheRastrigin
CSA

LTO

(d) Step-Size Policy

100 200 300 400500

Num FEval

43

44

45

46

47

48

O
b

je
ct

iv
e

V
al

u
e

CompositeGriewankRosenbrock
CSA

LTO

(e) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.3

0.4

0.5

S
te

p
S

iz
e

CompositeGriewankRosenbrock
CSA

LTO

(f) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

28 Shala et al.

100 200 300 400500

Num FEval

320

340

360

380

O
b

je
ct

iv
e

V
al

u
e

GallaghersGaussian101me
CSA

LTO

(g) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

S
te

p
S

iz
e

GallaghersGaussian101me
CSA

LTO

(h) Step-Size Policy

100 200 300 400500

Num FEval

−60

−55

−50

−45

−40

−35

O
b

je
ct

iv
e

V
al

u
e

DifferentPowers
CSA

LTO

(i) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

S
te

p
S

iz
e

DifferentPowers
CSA

LTO

(j) Step-Size Policy

100 200 300 400500

Num FEval

0

50

100

150

200

250

O
b

je
ct

iv
e

V
al

u
e

LinearSlope
CSA

LTO

(k) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0

2

4

6

8

10

S
te

p
S

iz
e

LinearSlope
CSA

LTO

(l) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 29

100 200 300 400500

Num FEval

−1000

−500

0

500

1000

O
b

je
ct

iv
e

V
al

u
e

RosenbrockRotated
CSA

LTO

(m) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
te

p
S

iz
e

RosenbrockRotated
CSA

LTO

(n) Step-Size Policy

100 200 300 400500

Num FEval

−30

−20

−10

0

O
b

je
ct

iv
e

V
al

u
e

SchaffersIllConditioned
CSA

LTO

(o) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

SchaffersIllConditioned
CSA

LTO

(p) Step-Size Policy

100 200 300 400500

Num FEval

−400

−200

0

200

400

600

800

O
b

je
ct

iv
e

V
al

u
e

StepEllipsoidal
CSA

LTO

(q) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

S
te

p
S

iz
e

StepEllipsoidal
CSA

LTO

(r) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

30 Shala et al.

100 200 300 400500

Num FEval

100

120

140

160

180

O
b

je
ct

iv
e

V
al

u
e

LunacekBiRastrigin
CSA

LTO

(s) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.3

0.4

0.5

S
te

p
S

iz
e

LunacekBiRastrigin
CSA

LTO

(t) Step-Size Policy

100 200 300 400500

Num FEval

0

200

400

600

800

1000

O
b

je
ct

iv
e

V
al

u
e

SharpRidge
CSA

LTO

(u) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

SharpRidge
CSA

LTO

(v) Step-Size Policy

100 200 300 400500

Num FEval

40

60

80

100

120

O
b

je
ct

iv
e

V
al

u
e

GallaghersGaussian21hi
CSA

LTO

(w) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
te

p
S

iz
e

GallaghersGaussian21hi
CSA

LTO

(x) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

	Learning Step-Size Adaptation in CMA-ES
	 Supplementary Material for:Learning Step-Size Adaptation in CMA-ES

