Prior-guided Bayesian Optimization

Artur Souza Luigi Nardi
Universidade Federal de Minas Gerais Lund University
arturluis@dcc.ufmg.br Stanford University

luigi.nardi@cs.lth.se

Leonardo B. Oliveira Kunle Olukotun
Universidade Federal de Minas Gerais Stanford University
leob@dcc.ufmg.br kunle@stanford.edu
Marius Lindauer Frank Hutter
Leibniz University Hannover University of Freiburg
lindauer@tnt.uni-hannover.de Bosch Center for Artificial Intelligence

fh@cs.uni-freiburg.de

Abstract

While Bayesian Optimization (BO) is a very popular method for optimizing ex-
pensive black-box functions, it fails to leverage the knowledge of domain experts.
This causes BO to waste function evaluations on bad design choices (e.g., machine
learning hyperparameters) that the expert already knows to work poorly. To address
this issue, we introduce Prior-guided Bayesian Optimization (PrBO). PrBO allows
users to transfer their knowledge into the optimization process in the form of
priors about which parts of the input space will yield the best performance, rather
than BO’s standard priors over functions (which are much less intuitive for users).
PrBO then combines these priors with BO’s standard probabilistic model to form a
pseudo-posterior used to select which points to evaluate next. We show that PrBO
is around 12 x faster than state-of-the-art methods without user priors and 10,000 x
faster than random search on a common suite of benchmarks. PrBO also converges
faster even if the user priors are not entirely accurate and robustly recovers from
misleading priors.

1 Introduction

Bayesian Optimization (BO) is a data-efficient method for the joint optimization of design choices that
gained great popularity in recent years. It is impacting a wide range of areas, including hyperparameter
optimization (Snoek et al.,[2012; Falkner et al.,2018), AutoML (Feurer et al.,[2015a; Hutter et al.|
2018)), robotics (Calandra et al., [2016), computer vision (Nardi et al., 2017; Bodin et al., [2016),
Computer Go (Chen et al., [2018), hardware design (Koeplinger et al.l 2018} Nardi et al., [2019),
and many others. It promises greater automation so as to increase both product quality and human
productivity. As a result, BO is also established in many large tech companies, e.g., with Google
Vizier (Golovin et al.,[2017) and Facebook BoTorch (Balandat et al., [2019)).

Nevertheless domain experts often have substantial prior knowledge that standard BO cannot incor-
porate. Users can incorporate prior knowledge by narrowing the search space; however, this type
of hard prior can lead to poor performance by missing important regions. BO also supports a prior
over functions p(f), e.g., via a kernel function. However, this is not the prior experts have: users
often know which ranges of hyperparameters tend to work best, and are able to specify a probability

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.

distribution pyest () to quantify these priors. E.g., many users of the Adam optimizer (Kingma &
Bal 2015) know that its best learning rate is often in the vicinity of le-3. Similarly, |[Navruzyan et al.
(2019)) derived neural network hyperparameter priors for image datasets based on their experience
with five datasets. In these cases, users know potentially good values for a new application, but cannot
be certain about them.

As a result, many competent users instead revert to manual search, which can fully incorporate
their prior knowledge. A recent survey showed that most NeurIPS 2019 and ICLR 2020 papers that
reported having tuned hyperparameters used manual search, with only a very small fraction using
BO (Bouthillier & Varoquaux, 2020). In order for BO to be adopted widely, and help facilitate faster
progress in the ML community by tuning hyperparameters faster and better, it is therefore crucial to
devise a method that allows experts to fully transfer their knowledge into the optimization. In this
paper, we introduce Prior-guided Bayesian Optimization (PrBO), a novel BO variant that allows users
to transfer their knowledge into BO in the form of priors. PrBO then combines this prior knowledge
with its learning model in order to learn better and faster where to find promising hyperparameter
configurations. Our technical contributions with PrBO are:

1. PrBO bridges the TPE methodology and standard BO probabilistic models, such as GPs,
RFs or Bayesian NN, instead of Tree Parzen Estimators only.

2. PrBO is flexible w.r.t. how the prior is defined, allowing previously hard-to-inject (e.g.
exponential) priors.

3. PrBO gives more importance to the model as iterations progress, gradually forgetting the
prior and ensuring robustness against misleading priors.

We demonstrate the effectiveness of PrBO on a common suite of benchmarks, showing that accurate
prior knowledge helps PrBO to achieve similar performance to current state-of-the-art on average
12x faster. PrBO also achieves better final performance in all but one of the benchmarks tested.

2 Background: Tree-structured Parzen Estimator

Our work is partially inspired by the TPE methodology of Bergstra et al.| (2011). Whereas the
standard probabilistic model in BO directly models p(y|x), the Tree-structured Parzen Estimator
(TPE) approach of Bergstra et al. models p(x|y) and p(y) insteaﬂ This is done by constructing two
parametric densities, g(«) and [(x), which are computed using the observations with function value
above and below a given threshold, respectively. The separating threshold y* is defined as a quantile
of the observed function values. TPE then defines p(x|y) as:

p(zly) =Ux)I(y <y*) +g(x)(1 - I(y <y")), ¢))

where I(y < y*) is 1 when y < y* and 0 otherwise. The parametrization of the generative model
p(z,y) = p(x|y)p(y) facilitates the computation of EI as it leads to EI«(x) « I(x)/g(x) and,
thus, arg max, ¢ y EI- (x) = argmax,cy () /g(x).

3 Bayesian Optimization with Priors

We propose a BO approach dubbed PrBO that allows field experts to transfer prior knowledge into
the optimization in the form of priors. PrBO combines this user-defined prior with a probabilistic
model that captures the likelihood of the observed data (x;,y;)?_;. PrBO is independent from the
probabilistic model being used, i.e., it can be freely combined with, e.g., GPs, RFs or BNNs.

3.1 Priors

PrBO allows users to transfer prior knowledge into BO. This is done via a prior distribution that
informs where in the input space X we expect to find good f(x) values. A point is considered “good”
if it leads to low function values. We denote the prior distribution P (), where g denotes that this is

'Note that, technically, the model does not parameterize p(y), since it is computed based on the observed data
points, which are heavily biased towards low values due to the optimization process. Instead, it parameterizes a
dynamically changing p(y;)—, which helps to constantly challenge the model to yield better observations.

a prior on good points and = € X is a given point. Similarly, we define a prior on where in the input
space we expect to have “bad” points. Although we could have a user-defined probability distribution
Py(x), we aimed to keep the load on users low and thus, for simplicity, compute Py (x) =1 — Py(x)

(P, () is normalized to [0, 1] by min-max scaling before computing Pb(:c))ﬂ

In practice, contains several dimensions but it is difficult for experts to provide a multivariate distri-
bution P, (). Users can easily specify, e.g., draw, a univariate or bivariate probability distribution
for continuous dimensions or provide a list of probabilities for discrete dimensions. In PrBO, users
are free to define a complex multi-variate distribution, but we expect the standard use case to be
that users only want to specify univariate distributions, implicitly assuming a prior that factors as

Py(x) = Hiil P,(z;), where D is the number of dimensions in X, x; is the i-th input dimension of
X. We show examples of continuous and discrete priors in Appendices[A]and|[E] respectively. We use
factorized priors in our experiments to mimic what we expect most users will provide. In Appendix [F}

we show that these factorized priors lead to similar performance compared to multivariate priors.

3.2 Model

Whereas the standard probabilistic model in BO, e.g., a GP, quantifies p(y|x) directly, that model is
hard to combine with the user-defined prior Py(x). We therefore introduce a method to translate the
standard probabilistic model p(y|x) into a model that is easier to combine with this prior. Similar to
the TPE work (see Sec. [2), our model combines p(x|y) and p(y) instead of directly modeling p(y|x).

The computation we perform for this translation is to quantify the probability that a given input @
is “good” under our standard probabilistic model p(y|x). As in TPE, we define settings as “good”
if their observed y-value is below a certain quantile v of the observed function values (so that
p(y < fy) = 7). We in addition exploit the fact that our standard probabilistic model p(y|x) has a
Gaussian form, and under this Gaussian prediction we can compute the probability M, (x) of the
function value lying below a certain quantile using the standard closed-form formula for Probability
of Improvement (PI, [Kushner| (1964)):

fy — b
M) = p(f @) < 1 o) = (0, @
where (15 and o, are the mean and standard deviation of the probabilistic model at &, and & is the
standard normal CDF, see Figure[I] Note that there are two probabilistic models here:

e The standard probabilistic model of BO, with a prior over functions p(f), updated by data
(x4, yi)i_; to yield a posterior over functions p(f|(x;,y;)!_,), allowing us to quantify the
probability M (x) = p(f(x) < fy|z, (x;, y:)i_,) in Equation

e The TPE-like generative model that combines p(y) and p(x|y) instead of directly modelling
p(yl).

Equation [2]bridges these two models by using the probability of improvement from BO’s standard
model as the probability M, (x) in TPE’s model. Ultimately, this is a heuristic since there is no formal
connection between the two probabilistic models. However, we believe that the use of BO’s familiar,
theoretically sound framework of probabilistic modelling of p(y|x), followed by the computation of
the familiar PI formula is a very intuitive choice for obtaining the probability of an input achieving at
least a given performance threshold — exactly the term we need for TPE’s M, (). Similarly, we also
define a probability M, (x) of = being bad as My(x) =1 — M4(x).

3.3 Pseudo-posterior

PrBO combines the prior in Section (3.I) and the model in Eq. (Z) into a pseudo-posterior. It
represents the updated beliefs on where we can find good points, based on the prior and data that has
been observed. The pseudo-posterior is computed as the product of the prior and the model:

o(z) o Py(@) My()P 3)

We note that for continuous spaces, this P;(2) is not a probability distribution, and therefore only a pseudo-
prior, as it does not integrate to 1. For discrete spaces, we normalize P, () so that it sums to 1 and therefore is a
proper probability distribution and prior.

Algorithm 1 PrBO Algorithm. D keeps track
of all function evaluations so far: (z;,v;)!_;.

1: Input: Input space X, user-defined prior
) distributions P,(x) and P,(«), quantile ~y
and BO budget B.
Output: Optimized point ;..
D «+ Initialize(X)
fort =1to B do
My(z) < fit_model_good(D)
My(x) < fit_model_bad(D)
t

9(x) Py(x) - Mg(m)f

8 b(x) « Py(x) My(x)?
9: x; € argmax,ey By (x)

7M@) b

X

AR A

Figure 1: Our model is composed by a prob-
abilistic model and the probability of improv-
ing over the threshold f,, i.c., right tail of the ~ 10* ¥t < f(x)

Gaussian. The black curve is the probabilistic ;D =DU(z,y)

model’s mean and the shaded area is the model’s ~ 12: end for
variance. 13: @ipe + ComputeBest(D)

14: return x;,.

where t is the current iteration, 3 is an optimization hyperparameter, M, () is defined in Eq. (2)),
and Py () is the prior defined in Sec rescaled to [0, 1]. We note that this pseudo-posterior is not
normalized, but this suffices for PrBO to determine the next x; as the normalization constant cancels
out (c.f. Section . Since g(x) is not normalized and we add a ¢/ exponent to Eq. [3| we refer to
g(x) as a pseudo-posterior, to emphasize that it is not a standard posterior probability distribution.

The t//3 fraction in Eq. (3) controls how much weight is given to the model. As the optimization
progresses, more weight is given to the model over the prior. Intuitively, we put more emphasis on
the model as it observes more data and becomes more accurate. We do this under the assumption
that the model will eventually be better than the user at predicting where to find good points. This
also allows to recover from misleading priors as we show in Appendix [A} similar to, and inspired by
Bayesian models, the data ultimately washes out the prior. The 8 hyperparameter defines the balance
between prior and model, with higher § values giving more importance to the prior and requiring
more data to overrule it.

We note that computing Equation (3) directly can lead to numerical issues. Namely, the pseudo-
posterior can reach extremely low values if the prior and model probabilities are low, especially as
t/B grows. To prevent this, in practice, PrBO uses the logarithm of the pseudo-posterior instead:
log(g(x)) o log(P,(x)) + % - log(My(x)). Once again, we also define an analogous pseudo-

posterior distribution on bad «: b(x), and use these quantities to define a density model p(x|y):

glx) if y<f
plaly) o {500 L1 @

3.4 Acquisition Function

We adopt the EI formulation used in (Bergstra et al., [2011) by replacing their Adaptive Parzen
Estimators with our computation of the pseudo-posterior in Eq. (3). Namely, we compute EI as:

inf fy -1
Ely () := /_ fmaX(fy—yﬁ)p(ylz)dy = /_ f(fy—y)wdy x <v+ Zgi(l —v)) :
4)

The full derivation of Eq. (3) is shown in Appendix [B] Eq. (5) shows that to maximize improvement
we would like points x with high probability under g(x) and low probability under b(x), i.e.,
minimizing the ratio b(x)/g(x). We note that the point that minimizes the ratio for our unnormalized
pseudo-posteriors will be the same that minimizes the ratio for the normalized pseudo-posterior and,
thus, the computation of the normalized pseudo-posteriors is unnecessary.

The dynamics of PrBO can be understood in terms of the following proposition:

Proposition 1 Given f., Py(x), Py(xz), My(x), My(x), g(x), b(x), p(x|y), and B as above, then

tlgrolc argerr}\{auxElf7 (x) = tlgglo ar%err)l{ax./\/lg(:n),

where My(x) and Ely are as defined in Eqgs. and respectively.

In early BO iterations the prior will have a predominant role, but in later BO iterations the model will
grow more important, and as Proposition [I| shows, if PrBO is run long enough the prior washes out
and PrBO only trusts the probabilistic model informed by the data.

3.5 Putting It All Together

Algorithm [I{ shows the PrBO algorithm, based on the components defined in the previous sections. In
Line 3, PrBO starts with a design of experiments (DoE) phase, where it randomly samples a number
of points from the user-defined prior P,(x). After initialization, the BO loop starts at Line 4. In each
loop iteration, PrBO fits the probabilistic model on the previously evaluated points (lines 5 and 6)
and computes the pseudo-posteriors g(x) and b(x) (lines 7 and 8 respectively). The EI acquisition
function is computed next, using the pseudo-posteriors, and the point that maximizes EI is selected as
the next point to evaluate at line 9. The black-box function evaluation is performed at Line 10. This
BO loop is repeated for a pre-defined number of iterations, according to the user-defined budget B.

4 Experiments

We implement both GPs and RFs as predictive models and use GPs in our experiments unless stated
otherwise. We set the model weight § = 10 and the model quantile to v = 0.05, based on our
sensitivity studies in Appendices [[land l] Before starting the main BO loop in PrBO, we randomly
sample D + 1 points from the prior. We optimize EI using a multi-start local search, similar to
SMAC (Hutter et al.,[2011). We start with four synthetic benchmarks: Branin, SVM, FC-NET and
XGBoost, which are 2, 2, 6 and 8 dimensional, respectively. The last three are part of the Profet
benchmarks (Klein et al., |2019)), generated by a generative model built using performance data on
OpenML or UCI datasets. See Appendix [C| for more details on the experimental setup. Due to
space constraints, we defer the (qualitatively similar) results for the SVM benchmark to Appendix [D]
For the same reason, we defer to Appendix [E|the study of a real-world application, a programming
language and compiler named Spatial for the design of application accelerators, i.e., FPGAs.
We apply PrBO to three Spatial benchmarks, namely, 7D shallow and deep CNNs, and a 10D
molecular dynamics grid application. We optimize design runtime constrained to the design fitting a
target FPGA. Compared to the previous state-of-the-art, PrBO converges on average 1.49x faster
on two benchmarks and achieves 1.28 x better final performance on the third. For context, this is a
significant improvement in the FPGA field, where a 10% improvement could qualify for acceptance
in a top-tier conference.

4.1 Prior Selection

In this section we study the effect of choosing a prior. A suitable property of the prior is that, by
selecting a tighter prior around an optimum, we would expect sampling from the prior to have an
increased performance. To the limit, if the prior is composed by only one point which is one of
the global optima, then the first sample (and all of them) from the prior will hit the optimum. To
have a sanity check of this property, we build an artificial prior in a controlled way. We rely on an
automated computation of the prior by computing a univariate Kernel Density Estimation (KDE)
using a Gaussian kernel on the synthetic benchmarks introduced above. We note that the goal of
these synthetic priors is to have an unbiased prior for our experiments, whereas manual priors would
be biased by our own expertise of these benchmarks. In practice, users will manually define these
priors without needing additional experiments.

We experiment with an array of varying quality priors. We select a constant 10D points in each prior
and vary the size of the random sample dataset so that we can make the priors more sharply peaked
around the optima in a controlled environment. We use the best performing 10D samples to create

XGBoost --@-RS (10,000x) Prior Sampling --B-PrBO Weak Prior ------ Initialization
Prior Sampling --A--Spearmint --%--PrBO No Prior -4-PrBO Prior

5
o
Qg
o
[] -
§3 9 10 Branin 0 FC-Net] XGBoost
a2 E’ 5
€
=1 v 0 -2 e
%) = P
0 g T, 0 ‘L?""':
%y Yy Yo O, O 0 0 = I - .,
00% 0% - ».z% «o\)i -00\)0'000 tg‘_lo ; 4| e 2 = ~0--.;.¢,"_‘:.._._.._.___
LRI fas Sy S | 5 .
0 100 200 0 100 200 300 0 100 200 300
Number of Evaluations Number of Evaluations Number of Evaluations

Figure 2: Regret of prior sam-

pling and PrBO with different Figure 3: Log regret comparison of PrBO with and without priors,

priors (¢ 4= o on 5 reps.). RS, and Spearmint (mean +/- one std on 5 repetitions). We run the
benchmarks for 100D iterations, capped at 300.

the prior from a uniform random sample dataset size of 10D1%; we refer to this prior as 2% in
Figure As an example the XGBoost benchmark has d = 8, so, 100% means we sample 80 points
and use all 80 to create the prior, 10% means we sample 800 points and use the best performing 80
to create the prior, 1% means we sample 8,000 and use the best 80 to create the prior, and so on.

Figure [2| shows the performance of purely sampling from the prior and running PrBO, respectively,
after 10D function evaluations with different priors. A bigger random sample dataset and a smaller
percentage leads to a tighter prior around the optimum, making the argument for a stronger prior.
This is confirmed by Figure 2] where a sharply peaked prior (right side of the figure) leads to a better
performance in both scenarios. In addition we observe that in contrast to sampling from the prior,
PrBO achieves a smaller regret by being able to evolve from the initial prior and making independent
steps towards better values of the objective function. More extensive experiments with a similar trend,
including the rest of the benchmarks, are in Appendix [H]

4.2 Comparison Against Strong Baselines

Figure [3|compares PrBO to other optimizers using the log simple regret on five runs (mean and std
error reported) on the synthetic benchmarks. We consider two priors in our experiments, a strong
prior, computed using a KDE on the best 10D out of 10,000,000.D uniform random samples, and a
weak prior, computed using a KDE on the best 10D out of 1,000D uniform random samples. We
emphasize that we only used these artificial priors in these experiments to guarantee that our prior
is not biased by our own expertise for the benchmarks we used. In practice, the prior is defined by
the user. We refer to Appendices[A] [E| and [G]for examples of PrBO with different prior types. We
compare the results of PrBO with and without priors (both weak and strong) to 10,000 x random
search (RS, i.e., for each BO sample we draw 10,000 uniform random samples), sampling from the
strong prior only, and Spearmint (Snoek et al., [2012) which is a well-adopted BO approach using
GPs and the EI acquisition function.

PrBO prior beats 10,000x RS and PrBO weak prior on all benchmarks. It also either outperforms or
matches the performance of sampling from the prior; this is expected because prior sampling cannot
recover from a non-ideal prior. The two methods are identical up to the initialization phase because
they both sample from the same prior in that phase.

PrBO Prior is more sample efficient and finds better results than Spearmint on three out of the four
benchmarks. On XGBoost, PrBO leads the performance until 139 BO iterations, where Spearmint
catches up and achieves better results in the end. Importantly, in all our experiments, PrBO with a
good prior consistently shows tremendous speedups in the early phases of the optimization process,
typically only requiring on average 8.25 iterations to reach the performance that Spearmint reaches
after 100 iterations (12.12x faster). Thus in comparison to traditional BO approaches, PrBO makes
use of the best of both worlds, leveraging prior knowledge and efficient optimization based on BO.

5 Related Work

TPE by Bergstra et al.|(2011) supports limited hand-designed priors in the form of normal or log-
normal distributions. We make three technical contributions that make PrBO more flexible than TPE.
First, we generalize over the TPE approach by allowing more flexible priors; second, our approach is

model-agnostic (i.e., PrBO is not limited to the TPE model; we use GPs and RFs in our experiments);
and third, PrBO is inspired by Bayesian models that give more importance to the data as iterations
progress. We also show that PrBO outperforms HyperOpt’s TPE in Appendix [G]

In parallel work, Li et al.| (2020) also allow users to specify priors via a probability distribution. Their
two-level approach first samples a number of configurations by maximizing Thompson samples from
a GP posterior and then chooses the configuration that has the highest prior as the next to evaluate. In
contrast, our method leverages the information from the prior more directly and ensures that the prior
gets washed out as we collect more data, enabling PrBO to overcome misspecified priors.

Similarly, black-box optimization tools, such as SMAC (Hutter et al., 2011)) or iRace (Lopez-Ibanez
et al.,[2016)) also support simple hand-designed priors, e.g. log-transformations. However, these are
not properly reflected in the predictive models and both cannot explicitly recover from bad priors.

Our work also relates to other meta-learning for BO approaches (Vanschoren, [2019), where BO is
applied to many similar optimization problems in a sequence such that knowledge about the general
problem structure can be exploited in future optimization problems. In contrast to these approaches,
PrBO is the first method that allows human experts to explicitly specify their priors. Furthermore,
PrBO does not depend on any meta-features (Feurer et al., 2015b)) and only incorporates a single
prior instead of many priors from different experiments (Lindauer & Hutter, 2018)).

6 Conclusions and Future Work

We have proposed a novel BO variant, PrBO, that allows users to transfer their expert knowledge
into the optimization in the form of priors about which parts of the input space will yield the best
performance. These are different than common priors over functions which are much less intuitive
for users. BO failed so far to leverage the knowledge of domain experts, not only causing inefficiency
but also getting users away from applying BO approaches because they could not exploit their prior
knowledge. PrBO addresses this issue and will therefore facilitate the adoption of BO. We showed
that PrBO is 12.12x more sample efficient than state-of-the-art methods, and 10,000 x faster than
random search, on a common suite of benchmarks, and also achieves better final performance in all
but one of the benchmarks tested. PrBO also robustly recovers from misleading priors. In future work,
we will study how PrBO can be used to leverage other types of prior knowledge from meta-learning,
to boost BO’s performance even further.

References

Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin Letham, Andrew Gor-
don Wilson, and Eytan Bakshy. Botorch: Programmable bayesian optimization in pytorch. arXiv
preprint arXiv:1910.06403, 2019.

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-parameter
optimization. In Advances in neural information processing systems, pp. 2546-2554, 2011.

Bruno Bodin, Luigi Nardi, M Zeeshan Zia, Harry Wagstaff, Govind Sreekar Shenoy, Murali Emani,
John Mawer, Christos Kotselidis, Andy Nisbet, Mikel Lujan, et al. Integrating algorithmic parame-
ters into benchmarking and design space exploration in 3d scene understanding. In Proceedings of
the 2016 International Conference on Parallel Architectures and Compilation, pp. 57-69, 2016.

Xavier Bouthillier and Gaél Varoquaux. Survey of machine-learning experimental methods at
NeurIPS2019 and ICLR2020. Research report, Inria Saclay Ile de France, January 2020. URL
https://hal.archives—ouvertes.fr/hal-02447823.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimization for
learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76(1-2):5-23,
2016.

Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser, David Silver, and
Nando de Freitas. Bayesian optimization in alphago. CoRR, abs/1812.06855, 2018.

Laurence Charles Ward Dixon. The global optimization problem: an introduction. Toward global
optimization, 2:1-15, 1978.

https://hal.archives-ouvertes.fr/hal-02447823

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the 35th International Conference on Machine Learning, pp.
1436-1445, 2018.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems 28, pp.
2962-2970. Curran Associates, Inc., 2015a.

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Initializing bayesian hyperparameter
optimization via meta-learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, pp. 1128-1135, 2015b.

Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham.
Bayesian optimization with inequality constraints. In Proceedings of the 31st International
Conference on Machine Learning, ICML, 2014.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D. Sculley.
Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2017.

GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/
GPvy, since 2012.

F. Hutter, L. Xu, H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction: Methods &
evaluation. Artificial Intelligence, 206:79-111, 2014.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and intelligent
optimization, pp. 507-523. Springer, 2011.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automated Machine Learning: Methods,
Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR, 2015.

Aaron Klein, Zhenwen Dai, Frank Hutter, Neil D. Lawrence, and Javier Gonzalez. Meta-surrogate
benchmarking for hyperparameter optimization. In Advances in Neural Information Processing
Systems NeurIPS, pp. 6267-6277, 2019.

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel,
Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Spatial:
A Language and Compiler for Application Accelerators. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2018.

Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, 86(1):97-106, 1964.

Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Antonio Robles-Kelly, and Svetha Venkatesh.
Incorporating expert prior knowledge into experimental design via posterior sampling. arXiv
preprint arXiv:2002.11256, 2020.

Marius Lindauer and Frank Hutter. Warmstarting of model-based algorithm configuration. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1355-1362,
2018.

Manuel Lépez-Ibaiez, Jérémie Dubois-Lacoste, Leslie Pérez Caceres, Thomas Stiitzle, and Mauro
Birattari. The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43-58, 2016.

Luigi Nardi, Bruno Bodin, Sajad Saeedi, Emanuele Vespa, Andrew J Davison, and Paul HJ Kelly.
Algorithmic performance-accuracy trade-off in 3d vision applications using hypermapper. In 2017
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp.
1434-1443. IEEE, 2017.

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space exploration. In 27th
IEEFE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, MASCOTS, 2019.

Arshak Navruzyan, Frank Sharp, Jeremy Howard, and Antoine Saliou. Optimizing hy-
perparams for image datasets in fastai. https://platform.ai/blog/page/1/
optimizing—hyperparams—-for—-image—datasets—in—-fastai/, 2019.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Andrei Paleyes, Mark Pullin, Maren Mahsereci, Neil Lawrence, and Javier Gonzélez. Emulation
of physical processes with emukit. In Second Workshop on Machine Learning and the Physical
Sciences, NeurIPS, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems (NeurlPS), pp.
2960-2968, 2012.

Joaquin Vanschoren. Meta-learning. In Automated Machine Learning - Methods, Systems, Challenges,
pp. 35-61. Springer Nature, 2019.

https://platform.ai/blog/page/1/optimizing-hyperparams-for-image-datasets-in-fastai/
https://platform.ai/blog/page/1/optimizing-hyperparams-for-image-datasets-in-fastai/

-- Prior Model ---- Log Posterior Model ---- Log Posterior Model ---- Log Posterior

1.00) 1] 100 110 1.00 o 1.00 0
! ! — — —
i i 2 k=l 2
0.75 HERE s 2 075 -5 2 075 -5 =
N [v 4 [o] [o] [
-20.50] i Zoso| =TT 2108 Bos0| men -mm N | 12108 Toso “108
= . & 2 Vi \ < I 8
0.25 S 0.25 -158 025 Vi \ 1 |-158 o025 'Y -152
_____ - = Y HE = TR
0.00| -======"""" 0.00 -20 0.00 H bt j-20 000 14 % -20
5 0 5 0 =5 0 5 0 5 0 5 0 5 [5 10
Real Function —— GP Optimum === Incumbent X RS X BO === Threshold X Next point ‘
200 200 8.81, 200, 0.43 200 0.40
3 x x 3
=100 =100 =100 ¥ 100
/—\X —x
. o 19.08 0 43 o N X s 0.40
=] 5 10 =5 0 5 10 =5 0 5 10 =5 0 5 10
X X X X
(a) No samples (b) 0 BO iterations (c) 10 BO iterations (d) 20 BO iterations

Figure 4: PrBO on the 1D Branin function. The leftmost column shows the exponential prior.
The other columns show the model and the log pseudo-posterior after 0 (RS only), 10, and 20 BO
iterations. PrBO forgets the wrong prior on the local optimum and converges to the global optimum.

A Prior Forgetting

In this section, we show that PrBO can recover from a misleading prior, thanks to our predictive
model and the ¢/ parameter in the pseudo-posterior computation Eq.[3] As BO progresses, the
predictive model becomes more accurate and receives more weight, guiding optimization away from
the wrong prior and towards better values of the objective function. Figure d]shows PrBO on the 1D
Branin function with an exponential prior. Columns (b), (c), and (d) show PrBO after D + 1 = 2
initial samples and 0, 10, 20 BO iterations, respectively. After initialization, as shown in Column (b),
the pseudo-posterior is nearly identical to the exponential prior and guides PrBO towards the region
of the space on the right, which is towards the local optimum. This happens until the predictive model
becomes certain there will be no more improvement from sampling that region (Columns (c) and
(d)). After that, the predictive model guides the pseudo-posterior towards exploring regions with
high uncertainty. Once the global minimum region is found, the pseudo-posterior starts balancing
exploiting the global minimum and exploring regions with high uncertainty, as shown in[4d (bottom).
Notably, the pseudo-posterior after = > 4 falls to 0 in id (top), as the predictive model is certain
there will be no improvement from sampling the region of the local optimum.

B EI Derivation

Here, we provide a full derivation of Eq. (3)):

inf I~
MM@:/ max(f — . Op(yle)dy = | (f, - PEPW g

— inf —inf p(x)

As deﬁned in Section (y < fy) =y and is a quantile of the observed objective values {y®}.
Then p(xz) = [z p(x y)dy = vg(x) + (1 — v)b(x), where g(x) and b(x) are the posteriors
1ntr0duced in Section Iﬁl Therefore

f’y fv f’v
/ (fy —wp(zly)p(y)dy = g() / (fy =vpy)dy = v fr9(z) — g() / yp(y)dy, (7)

— inf —inf — inf

so that finally

vh9(@) — g(x) [11 cup(y b(z) -
1) = < () ®

10

C Experimental Setup

We use a combination of publicly available implementations for our predictive models. For our Gaus-
sian Process (GP) model, we use GPy’s (GPy, [since 2012)) GP implementation with the Matérn5/2
kernel. We use different length-scales for each input dimensions, learned via Automatic Relevance
Determination (ARD) (Neal,2012). For our Random Forests (RF), we use scikit-learn’s RF imple-
mentation (Pedregosa et al., [2011). We set the fraction of features per split to 0.5, the minimum
number of samples for a split to 5 and disable bagging. We also adapt our RF implementation to use
the same split selection approach as |Hutter et al.| (2014).

For our constrained Bayesian Optimization (cBO) approach, we use scikit-learn’s RF classifier,
trained on previously explored configurations, to predict the probability of a configuration being
feasible. We then weight our EI acquisition function by this probability of feasibility, as proposed
by|Gardner et al.|(2014). We normalize our EI acquisition function before considering the probability
of feasibility, to ensure both values are in the same range. This cBO implementation is used in the
Spatial use-case as inNardi et al.|(2019).

For all experiments, we set the model weight to 5 = 10 and the model quantile to v = 0.05, see
Appendices [JJand[I] Before the main BO loop, PrBO is initialized by random sampling D + 1 points
from the prior, where D is the number of input dimensions. We use the public implementation of
Spearming’, which uses 2 random samples for initialization. We set the bandwidth of our KDE priors
to 100n~ D, where D is the number of input dimensions, see Appendix [Hl We normalize our KDE
priors before computing the pseudo-posterior, to ensure they are in the same range as our model. We
also implement interleaving which randomly samples a point to explore during BO with 10% chance.

We optimize EI using a multi-start local search, similar to the one used in SMAC (Hutter et al., 201 1J).
Namely, we start local searches on the 10 best points evaluated in previous BO iterations, on the 10
best performing points from a set of 10,000 random samples and on the 10 best performing points
from 10,000 random samples drawn from the prior. To compute the neighbors of each of these 30
total points, we normalize the range of each objective to [0, 1] and randomly sample four neighbors
from a truncated Gaussian centered at the original value and with standard deviation o = 0.2.

We use four synthetic benchmarks in our experiments.

Branin. The Branin function is a well-known synthetic benchmark for optimization problems (Dixon|
1978)). The Branin function has two input dimensions and three global minima.

SVM. Hyperparameter-optimization benchmark in 2D based on Profet (Klein et al.,|2019). This
benchmark is generated by a generative meta-model built using a set of SVM classification models
trained on 16 OpenML tasks. The benchmark has two input parameters, corresponding to SVM
hyperparameters.

FC-Net. Hyperparameter and architecture optimization benchmark in 6D based on Profet. The
FC-Net benchmark is generated by a generative meta-model built using a set of feed-forward neural
networks trained on the same 16 OpenML tasks as the SVM benchmark. The benchmark has six
input parameters corresponding to network hyperparameters.

XGBoost. Hyperparameter-optimization benchmark in 8D based on Profet. The XGBoost benchmark
is generated by a generative meta-model built using a set of XGBoost regression models in 11 UCI
datasets. The benchmark has eight input parameters, corresponding to XGBoost hyperparameters.

The search spaces for each benchmark are summarized in Table[I] For the Profet benchmarks, we
report the original ranges and whether or not a log scale was used. However, in practice, Profet’s
generative model transforms the range of all hyperparameters to a linear [0, 1] range. We use Emukit’s
public implementation for these benchmarks (Paleyes et al., 2019).

D SVM Regret Comparison

In addition to the experiments in Section .2} we show the performance of PrBO on the SVM
benchmark. Figure [5] shows a log regret comparison of PrBO, Spearmint, Prior Sampling and
10,000 RS. We note that the results are similar to the other benchmarks in Figure [3] Namely, PrBO

3https://github.com/HIPS/Spearmint

11

Table 1: Search spaces for our synthetic benchmarks. For the Profet benchmarks, we report the
original ranges and whether or not a log scale was used.

Benchmark | Parameter name Parameter values Log scale
Branin x1 —5,10]
2 0,15 -
SVM C [e710, e v
v e—lO7 610] v
FCNet learning rate 107°%1071 v
batch size 8,128] v
units layer 1 16,512] v
units layer 2 16,512] v
dropout rate 11 0.0,0.99] -
dropout rate 12 0.0,0.99] -
XGBoost learning rate 107°%,1071 v
gamma 0, 2] -
L1 regularization [107°,10°] v
L2 regularization 107°,10%] v
number of estimators 10, 500] -
subsampling 0.1,1] -
maximum depth 1,15] -
minimum child weight [0, 20] -

--@-RS (10,000x) Prior Sampling --B-PrBO Weak Prior ------ Initialization
--A-—-Spearmint --%--PrBO No Prior -<4-PrBO Prior

SVM

o

.
:
N
Sereuibes =

1

e |
~e-—o---e-— gl

=
b abil SEEX STNPUNNPUNNY

Log Simple Regret
AR
o

|
N
o

0 100 200
Number of Evaluations

Figure 5: Log regret comparison of PrBO with and without priors, 10,000x RS, and Spearmint (mean
+/- one std on 5 repetitions). We run the benchmark for 200 iterations.

with a strong prior outperforms RS and spearmint. PrBO also outperforms Spearmint with a weak
prior and even with a uniform prior.

E Spatial Real-world Application

Spatial (Koeplinger et al., 2018) is a programming language and corresponding compiler for
the design of application accelerators on reconfigurable architectures, e.g. field-programmable gate
arrays (FPGAs). These reconfigurable architectures are a type of logic chip that can be reconfigured
via software to implement different applications. Spatial provides users with a high-level of
abstraction for hardware design, so that they can easily design their own applications on FPGAs. It
allows users to specify parameters that do not change the behavior of the application, but impact the
runtime and resource-usage (e.g. logic units) of the final design. During compilation, the Spatial
compiler estimates the ranges of these parameters and estimates the resource-usage and runtime
of the application for different parameter values. These parameters can then be optimized during
compilation in order to achieve the design with the fastest runtime. We fully integrate PrBO as a pass
in Spatial’s compiler, so that Spatial can automatically use PrBO for the optimization during
compilation. This enables Spatial to seamlessly call PrBO during the compilation of any new
application to guide the search towards the best design on an application-specific basis.

In our experiments, we introduce for the first time the automatic optimization of three Spatial
real-world applications, namely, 7D shallow and deep CNNs, and a 10D molecular dynamics grid
application. Previous work by |[Nardi et al.| (2019) had applied automatic optimization of Spatial

12

Table 2: Search space, priors, and expert configuration for the MD Grid application. The default
value for each parameter is shown in bold.

Parameter name | Type Values Expert | Prior
loop_grid0_z Ordinal 1,2,..,15,16] | 1 [0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05]
loop_q Ordinal 1,2,..,31,32] | 8 [0.08, 0.08, 0.02, 0.1, 0.02, 0.02, 0.02,
0.1, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.1, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02]
par_load Ordinal (1,2, 4] 1 [0.45, 0.1, 0.45]
loop_p Ordinal 1,2,..,31,32] | 2 [0.1, 0.1, 0.1, 0.1, 0.05, 0.03, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02]
loop_grid0_x Ordinal 1,2,..,15,16] | 1 [0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05]
loop_gridl_z Ordinal 1,2,..,15,16] | 1 [0.2,0.2,0.1, 0.1, 0.07, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03]
loop_grid0_y Ordinal [1,2,..,15,16] | 1 [0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05]
ATOMI1LOOP Categorical | [false, true] true [0.1, 0.9]
ATOM2LOOP Categorical | [false, true] true [0.1, 0.9]
PLOOP Categorical | [false, true] true [0.1, 0.9]
—— RS —— HyperMapper = —— PrBO —— Expert Configuration === Initialization
24M Shallow CNN 24M Deep CNN M MD Grid
18M 15M 3m
o1 > 9M B 1w
S\ S] L S
% 9M % 3M 2
S ™ \\ 3 2™ 5200k \k%
5M M 50k
0 20 a0 0 20 70 20 50 00 15,
Number of Evaluations Number of Evaluations Number of Evaluations

Figure 6: Log regret comparison of RS, HyperMapper, PrBO, and manual optimization on Spatial
(mean +/- one std on 5 repetitions). Vertical lines are initialization.

parameters on a set of benchmarks but in our work we focus on real-world applications raising the bar
of state-of-the-art automated hardware design optimization. PrBO is used to optimize the parameters
to find a design that leads to the fastest runtime. The search space for these three applications is
based on ordinal and categorical parameters; to handle these discrete parameters in the best way we
implement and use a RF surrogate instead of a GP as explained in Appendix |C} These parameters are
application specific and control how much of the FPGAs’ resources we want to use to parallelize
each step of the application’s computation. The goal is to find which steps are more important to
parallelize in order to achieve the fastest runtime. Some parameters also control whether we want
to enable pipeline scheduling or not, which consumes resources but accelerates runtime. We refer
to|Koeplinger et al.[(2018)) and [Nardi et al.|(2019) for more details on Spatial’s parameters.

The three Spatial benchmarks also have feasibility constraints in the search space, meaning that
some parameter configurations are infeasible. A configuration is considered infeasible if the final
design requires more logic resources than what the FPGA provides, i.e., it is not possible to perform
FPGA synthesis because the design does not fit in the FPGA. To handle these constraints, we use our
¢BO implementation (Appendix [C). Our goal is thus to find the design with the fastest runtime under
the constraint that the design fits the FPGA resource budget.

13

Table 3: Search space, priors, and expert configuration for the Shallow CNN application. The default
value for each parameter is shown in bold.

Parameter name | Type Values Expert | Prior

LP Ordinal [1,4,8,16,32] | 16 [0.4, 0.065, 0.07, 0.065, 0.4]

P1 Ordinal [1,2,3,4] 1 [0.1, 0.3,0.3,0.3]

SP Ordinal [1,4,8,16,32] | 16 [0.4, 0.065, 0.07, 0.065, 0.4]

P2 Ordinal [1,2,3,4] 4 [0.1,0.3,0.3,0.3]

P3 Ordinal 1,2,..,31,32] | 1 [0.1, 0.1, 0.033, 0.1, 0.021, 0.021, 0.021,

0.1, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021]

P4 Ordinal 1,2,..,47,48] | 4 [0.08, 0.0809, 0.0137, 0.1, 0.0137,
0.0137,0.0137, 0.1, 0.0137, 0.0137,
0.0137, 0.05, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137]

x276 Categorical | [false, true] true [0.1, 0.9]

Table 4: Search space, priors, and expert configuration for the Deep CNN application. The default
value for each parameter is shown in bold.

Parameter name | Type Values Expert | Prior

LP Ordinal [1,4,8,16,32] | 8 [0.4, 0.065, 0.07, 0.065, 0.4]

P1 Ordinal [1,2,3,4] 1 [0.4,0.3,0.2,0.1]

SP Ordinal [1,4,8,16,32] | 8 [0.4, 0.065, 0.07, 0.065, 0.4]

P2 Ordinal [1,2,3,4] 2 [0.4,0.3,0.2,0.1]

P3 Ordinal 1,2,..,31,32] | 1 [0.04, 0.01, 0.01, 0.1, 0.01, 0.01, 0.01,

0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.2, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.1, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.2]

P4 Ordinal 1,2,..,47,48] | 4 [0.05, 0.005, 0.005, 0.005, 0.005, 0.005,
0.005, 0.13, 0.005, 0.005, 0.005, 0.005,
0.005, 0.005, 0.005, 0.2, 0.005, 0.005,
0.005, 0.005, 0.005, 0.005, 0.005, 0.11,
0.005, 0.005, 0.005, 0.005, 0.005, 0.005,
0.005, 0.2, 0.005, 0.005, 0.005, 0.005,
0.005, 0.005, 0.005, 0.005, 0.005, 0.005,
0.005, 0.005, 0.005, 0.005, 0.005, 0.1]
x276 Categorical | [false, true] true [0.1, 0.9]

14

--@-PrBO Weak Multivariate Prior --#-PrBO Weak Univariate Prior ------ Initialization

--4-- PrBO Multivariate Prior --%--PrBO Univariate Prior
Branin SVM 5 FC-Net XGBoost
10 -5 4 - - 1

AN g, g

= 5 > il g g o

g 1 £ 10 -&...:: f}fii i i L N -

o O [} 1 2 & PRRTS

a \ a i 2 | by T R e

£ E_15 s o, s =

2 2 A P Azl | Nt
g ~ 2 .

8 S 1 4 S = _3 e -——

B
0 50 100 150 200 0 50 100 150 200 0 100 200 300 0 100 200 300
Number of Evaluations Number of Evaluations Number of Evaluations Number of Evaluations

Figure 7: Log regret comparison of PrBO with multivariate and univariate KDE priors (mean +/- one
std on 5 repetitions). We run the benchmarks for 100D iterations, capped at 300.

We compare the performance of PrBO to RS, manual optimization, and HyperMapper (Nardi et al.,
2019), the current state-of-the-art BO solution for Spatial. For a fair comparison, both PrBO and
HyperMapper use RFs as predictive probabilistic model. The priors for these Spatial applications
take the form of a list of probabilities, containing the probability of each ordinal or categorical value
being good. Each benchmark also has a default configuration, which ensures all methods start with
at least one feasible configuration. The priors, expert configuration, and default configurations for
these benchmarks were provided once by an unbiased Spatial developer, who is not an author
of this paper, and kept unchanged during the entire project. The search space, priors, and expert
configuration for each application are presented in Tables and[4]

Figure [6] shows the log regret on the Spatial benchmarks. PrBO vastly outperforms RS in all
benchmarks; notably, RS does not improve over the default configuration in MD Grid. PrBO is also
able to leverage the expert’s prior and outperform the expert’s configuration in all benchmarks (2.68 x,
1.06x, and 10.4 x speedup for shallow CNN, deep CNN, and MD Grid, respectively). Compared to
HyperMapper, PrBO achieves better performance in the MD Grid benchmark (1.28 x speedup). For
context, this is a significant improvement in the FPGA field, where a 10% improvement could qualify
for acceptance in a top-tier conference. In the CNN benchmarks, PrBO converges to the minima
regions faster than HyperMapper (1.58 x and 1.4 x faster for shallow and deep respectively). Thus,
PrBO leverages the best of both worlds (the expert’s prior knowledge and BO) to provide a new state
of the art for Spatial.

F Multivariate Prior Comparison

Figure[/|shows a log regret comparison of PrBO with univariate and multivariate KDE priors. We
show results for univariate and multivariate versions of our weak and strong KDE priors. We use the
best 10D points out of 1,000D and 10,000,000D randomly sampled points to create our weak and
strong priors, respectively. We use the same points to create the univariate and multivariate priors.
We recall that the goal of these synthetic priors is to have an unbiased prior for our experiments,
whereas manual priors would be biased by our own expertise of these benchmarks. In practice, users
will manually define these priors without needing additional experiments.

In all cases PrBO achieves similar performance with univariate and multivariate priors. For the
Branin and SVM benchmarks, the weak multivariate prior leads to slightly better results than the
weak univariate prior. However, the difference is small, in the order of 10~* and 1076, respectively.

Surprisingly, for the XGBoost benchmark, the univariate version for both the weak and strong priors
lead to better results than their respective multivariate counterparts, though, once again, the difference
in performance is small, around 0.2 and 0.03 for the weak and strong prior, respectively, whereas the
XGBoost benchmark can reach values as high as f () = 600. Our hypothesis is that this difference
comes from the bandwidth estimator (100n_%), which leads to larger bandwidths, consequently,
smoother priors, when a multivariate prior is constructed.

15

-@- TPE -A- PrBO ----- Initialization

Branin SVM EC-Net. XGBoost
q 0 . 0 7.5
” = 9 o o
® s @ o 5
IR 2 -5 k g-1 5 501
Yoo g m @ o« 2 1
ol N) < e T B z ,g
2 \ S e - g2 o “2l
= \ m=tice=: | T_19 L 2 =Y ik
E o5l | E \ E s E 0.0 Wity
@ L @ 3 @ = :\h G g S R
2 I o \ - > RN
g tand g-15 \5 S- P g-25 o=
—-10 M| | 7 STt | T4 ‘:‘zh:'?_":::::":“:“ - blesy
SR s -
0 50 100 150 200 0 50 100 150 201 0 100 200 300 0 100 200 301
Number of Evaluations Number of Evaluations Number of Evaluations Number of Evaluations

Figure 8: Log regret comparison of PrBO and TPE (mean +/- one std on 5 repetitions). We run the
benchmarks for 100D iterations, capped at 300.

Branin Branin Branin Branin
10 10

Simple Regret
Simple Regret
Simple Regret
Simple Regret

SVM

9.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 FCNet 01 FCNet) FCNet FCNet

s XGBoost 8 XGBoost s XGBoost XGBoost

> o

Simple Regret
N

Simple Regret

(@a=10b=4 b a=1,b=0 (©)a=10,b=0

Figure 9: Simple regret of sampling from the prior with different priors for our synthetic benchmarks
(mean +/- one std on 5 repetitions). A more informative prior gives better results in all benchmarks.

G Comparison to TPE

We compare PrBO to the TPE approach of Bergstra et al| (2011)) on our four synthetic benchmarks. We
use Hyperopt’s implementatiorﬁlz)f TPE, which defines priors as one of a list of supported distributions,
including Uniform, Normal, and Lognormal distributions. Since it is not possible to input the KDE
priors introduced in Section[d.T]into the TPE algorithm, we instead use manually defined priors in

*https://github.com/hyperopt/hyperopt

16

the format supported by the Hyperopt implementation. We note that this is straightforward in PrBO,
as PrBO supports any form of probability distribution as a prior. We are then able to perform a fair
comparison between the two approaches that use the same exact prior.

We define the prior for each input parameter as a Gaussian distribution with mean at the optimum and
with standard deviation equal to half of the parameters range. For the Branin prior, we arbitrarily
choose one of the optima, i.e., the (7, 2.275) optimum. For the Profet benchmarks, we use the
minimum out of 10,000,000D random samples as an approximation of the optimum. We note that
using Hyperopt’s Gaussian priors leads to an unbounded search space, which sometimes leads TPE
to suggest parameter configurations outside the allowed parameter range. To prevent these values
from being evaluated, we convert values outside the parameter range to be equal to the upper or lower
range limit, depending on which limit was exceeded.

Figure 8| shows a log regret comparison between PrBO and TPE on our four synthetic benchmarks.
PrBO outperforms TPE in three out of four benchmarks, namely, Branin, SVM, and FCNet. We
note, however, that the good performance of TPE on XGBoost may be an artifact of the approach of
clipping values to its maximal or minimal values as mentioned above. In fact, the clipping nudges
TPE towards promising configurations in this case, since XGBoost has low function value near the
edges of the search space. Overall, the better performance of PrBO is expected, since PrBO is able to
combine prior knowledge with more sample-efficient surrogates, which leads to better performance.

H Prior Bandwidth Selection

We show the effect of different bandwidth sizes on the univariate KDE prior. For that, we compare
the performance of sampling from the prior and PrBO with different bandwidth sizes. We use scipy’s
Gaussian KDE implementation and modify its bandwidth size with four variations of Scott’s Rule
(mfﬁ. We experiment with a = 1, b = 4 (scipy’s default); a = 1, b = 0; a = 10, b = 0; and
a = 100, b = 0. Note that larger values for a and smaller values for b lead to smaller bandwidths.
For each bandwidth size, we show results for an array of varying quality priors. We select a constant
10D points in each prior and vary the size of the uniform random sample dataset. We follow the
following rule: we use the best performing 10D samples to create the prior from a random sample
dataset size of 1OD1%; we refer to this prior as %. We experiment with dataset sizes varying from
10D to 107 D.

Figure [0 shows the performance of purely sampling from the prior. We note that, in most cases,
using a larger dataset leads to better results. This is expected, sampling more points means we find
more points near the optima and, therefore, the prior will be built with points closer to the optima.
Likewise, we note that smaller bandwidths often lead to better results, especially as more points
are sampled. This is also expected, since a smaller bandwidth means the prior distribution will be
more peaked around the optima. However, there are a couple of exceptions to these trends. First,
for the Branin, sampling more points does not lead to a better prior when we use a = 1, b = 4, this
is likely because the multiple minima of the Branin and the bigger bandwidth lead the prior to be
oversmoothed, missing the peaks near the optima. Second, smaller bandwidths do not always lead
to better performance for smaller random sample datasets. This happens because we find points
farther from the optima in these datasets and end up computing priors peaked at points that are farther
from the optima, i.e., our priors become misleading. The effects of these misleading priors can be
especially noticed for the 100% random samples dataset. Based on these results, we set our KDE

priors to 100n~ D, where D is the number of input dimensions.

Figure[10]shows the performance of PrBO for different priors. The same observations from Figure 9]
hold here. Namely, sampling more points and using smaller bandwidths lead to better performance.
Also, the 100% dataset once again leads to inconsistent results, since it is a misleading prior for PrBO.
Based on these results, we use the smallest bandwidth and largest dataset in our experiments, i.e.
a = 100,b = 0, and 0.0001%. Intuitively, this is a reasonable choice, since these priors will be our
closest approximation to an ideal prior that is centered exactly at the optima, where sampling from
the prior always leads to the optimum. Our results in Figures [0]and[I0]shows that this combination
leads to the best results in all benchmarks, as expected.

Figure[TT]shows a performance comparison between PrBO and sampling from the prior. For these
results, we use ¢ = 100,b = 0 and compare the regret of PrBO and sampling from the prior for

17

Branin Branin Branin Branin
10 10

10 10
o o o o
o 8 [[5
o L o o
o o o o
Q 6 9] Q)
o 4 4 o
2 Q 2 2
Q 4 Q Q Q
£ £ £ £
[n [n
olo1000s QBZ 01 021 0.00 0.01

SVM 0.10 SVM
@o.08
L
5
Z2o.06
9
5004
£
& 0.02
280 0.00 0.00 0,00 0.00 0.00 0.00 0.00 22 0.00 0,00 0.00 0,00 0.00 0.00
. g, Yo O, Q0O O : %, Yo, Yo O, O, O O
0, %0, °% %, %, %0, ° 0, %0, s %, % % ©
o% A J% 01% 003}000(a% oo 1% 02% 00\)&000\)
& Yo s Yo
0.10 FCNet 01 FCNet 01 FCNet 0.10 FCNet

8 XGBoost 8 XGBoost 8 XGBoost 8 XGBoost
o o
[26
o o
& &
o4 355 P
=y a
£> £>
(2] 1.07 (2}
0

(@a=1b=4 b a=1,b=0 (©)a=10,b=0 (d) a=100,b=0

Figure 10: Simple regret of PrBO with different priors for our synthetic benchmarks (mean +/- one
std on 5 repetitions). A more informative prior gives better results in all benchmarks.

—— Prior Sampling -@- 100% -®- 1% @ - Initialization
-@- PrBO -@- 0.01% 0.0001%

Branin SVM 0 FC-Net

XGBoost

-
=)
=)

Log Simple Regret
o
-
/‘//ﬂ
T
i
1
i
1
i
i
1
i
|
1
1
I
1
Log Simple Regret
b

7.5]

5.0}

2.5

==

0.0}

Log Simple Regret
Log Simple Regret

=2.5
60 0

15 20 5 10 15 20 0

5 20 40 40 60 80
Number of Evaluations Number of Evaluations Number of Evaluations

0
Number of Evaluations

Figure 11: Log simple regret comparison between PrBO and sampling from the prior. The shaded
lines are mean +/- one std error.

different dataset sizes. PrBO performs better for nearly all dataset sizes and benchmarks. This is
expected as PrBO complements the prior with its probabilistic model, learning which regions within
the prior are better to explore and also recovering from misleading priors. There are two exceptions
on the SVM benchmark, where sampling from the prior performs slightly better for 0.01% and
0.0001% datasets. We note, however, that the difference in performance is extremely small, in the
order of 10~ and 1077, respectively.

18

Branin

XGBoost

Simple Regret
Simple Regret
Simple Regret

Figure 12: Comparison of PrBO with a weak KDE prior and different values for the v hyperparameter
on our four synthetic benchmarks (mean +/- one std on 5 repetitions). We run PrBO with a budget of
10D function evaluations.

Branin

|
N

XGBoost

|
o v s w

Simple Regret

|
~

Figure 13: Comparison of PrBO with a weak KDE prior and different values for the 3 hyperparameter
on our four synthetic benchmarks(mean +/- one std on 5 repetitions). We run PrBO with a budget of
10D function evaluations.

I ~-Sensitivity Study

We show the effect of the y hyperparameter introduced in Section [3.2] for the quantile identifying the
points considered to be good. To show this, we compare the performance of PrBO with a weak KDE
prior and different v values. We use our weak prior as it leads to greater variation in performance,
which helps to visualize better the impact of the « hyperparameter. For all experiments, we initialize
PrBO with D + 1 random samples and then run PrBO until it reaches 10D function evaluations. For
each v value, we run PrBO five times and report mean and standard deviation.

Figure [I2]shows the results of our comparison. We first note that values near the lower and higher
extremes lead to degraded performance, this is expected, since these values will lead to an excess of
either exploitation or exploration. Further, we note that PrBO achieves similar performance for all
values of 7y, however, v = 0.03 and v = 0.05 consistently lead to better performance, with v = 0.05
usually leading to lower deviation.

J [-Sensitivity Study

We show the effect of the § hyperparameter introduced in Section [3.3]for controlling the influence of
the prior over time. To show the effects of 3, we compare the performance of PrBO with a weak KDE
prior and different 5 values on our four synthetic benchmarks. We use our weak prior as it leads to
greater variation in performance, which helps to visualize better the impact of the 8 hyperparameter.
For all experiments, we initialize PrBO with D 4 1 random samples and then run PrBO until it
reaches 10D function evaluations. For each 3 value, we run PrBO five times and report mean and
standard deviation.

Figure[[3]shows the results of our comparison. We note that values of 3 that are too low (near 0.01)
or too high (near 1,000) lead to lower performance. This shows that putting too much emphasis on
the model or the prior will lead to degraded performance, as expected. Further, we note that 5 = 10
lead to the best performance in three out of our four benchmarks. This result is reasonable, as § = 10
means PrBO will put more emphasis on the prior in early iterations, when the predictive model is still
not accurate, and slowly shift towards putting more emphasis on the model as the model sees more
data and becomes more accurate.

19

	Introduction
	Background: Tree-structured Parzen Estimator
	Bayesian Optimization with Priors
	Priors
	Model
	Pseudo-posterior
	Acquisition Function
	Putting It All Together

	Experiments
	Prior Selection
	Comparison Against Strong Baselines

	Related Work
	Conclusions and Future Work
	Prior Forgetting
	EI Derivation
	Experimental Setup
	SVM Regret Comparison
	Spatial Real-world Application
	Multivariate Prior Comparison
	Comparison to TPE
	Prior Bandwidth Selection
	-Sensitivity Study
	-Sensitivity Study

