-- Prior Model ---- Log Posterior Model ---- Log Posterior Model ---- Log Posterior

1.00) 1] 100 110 1.00 o 1.00 0
! ! — — —
i i 2 k=l 2
0.75 HERE s 2 075 -5 2 075 -5 =
N [v 4 [o] [o] [
-20.50] i Zoso| =TT 2108 Bos0| men -mm N | 12108 Toso “108
= . & 2 Vi \ < I 8
0.25 S 0.25 -158 025 Vi \ 1 |-158 o025 'Y -152
_____ - = Y HE = TR
0.00| -======"""" 0.00 -20 0.00 H bt j-20 000 14 % -20
5 0 5 0 =5 0 5 0 5 0 5 0 5 [5 10
Real Function —— GP Optimum === Incumbent X RS X BO === Threshold X Next point ‘
200 200 8.81, 200, 0.43 200 0.40
3 x x 3
=100 =100 =100 ¥ 100
/—\X —x
. o 19.08 0 43 o N X s 0.40
=] 5 10 =5 0 5 10 =5 0 5 10 =5 0 5 10
X X X X
(a) No samples (b) 0 BO iterations (c) 10 BO iterations (d) 20 BO iterations

Figure 4: PrBO on the 1D Branin function. The leftmost column shows the exponential prior.
The other columns show the model and the log pseudo-posterior after 0 (RS only), 10, and 20 BO
iterations. PrBO forgets the wrong prior on the local optimum and converges to the global optimum.

A Prior Forgetting

In this section, we show that PrBO can recover from a misleading prior, thanks to our predictive
model and the ¢/ parameter in the pseudo-posterior computation Eq. 3. As BO progresses, the
predictive model becomes more accurate and receives more weight, guiding optimization away from
the wrong prior and towards better values of the objective function. Figure 4 shows PrBO on the 1D
Branin function with an exponential prior. Columns (b), (c), and (d) show PrBO after D + 1 = 2
initial samples and 0, 10, 20 BO iterations, respectively. After initialization, as shown in Column (b),
the pseudo-posterior is nearly identical to the exponential prior and guides PrBO towards the region
of the space on the right, which is towards the local optimum. This happens until the predictive model
becomes certain there will be no more improvement from sampling that region (Columns (c) and
(d)). After that, the predictive model guides the pseudo-posterior towards exploring regions with
high uncertainty. Once the global minimum region is found, the pseudo-posterior starts balancing
exploiting the global minimum and exploring regions with high uncertainty, as shown in 4d (bottom).
Notably, the pseudo-posterior after z > 4 falls to 0 in 4d (top), as the predictive model is certain
there will be no improvement from sampling the region of the local optimum.

B EI Derivation

Here, we provide a full derivation of Eq. (5):

inf I~
BIy (@)= [max(s, - . Ople)dy = | (f, - PEPW g

— inf —inf p(x)

As deﬁned in Section 3.2, p(y < f,) =+ and +y is a quantile of the observed objective values {y®}.
Then p(xz) = [, p(x|y)p(y)dy = vg(x) + (1 — v)b(x), where g(x) and b(x) are the posteriors
1ntr0duced in Section 3.3. Therefore

f’y fv f’v
/ (fy —y)p(zly)p(y)dy = g(x) / (fy —yp(y)dy = vfr9(x) — g(x) / yp(y)dy, (7)
—inf — inf —inf
so that finally
v9@) = g(@) [5 uply b=z N\
Blp, (@) = 'w()+ﬂ*7w@) “(”*g@%l ”) | ®

10

C Experimental Setup

We use a combination of publicly available implementations for our predictive models. For our Gaus-
sian Process (GP) model, we use GPy’s (GPy, since 2012) GP implementation with the Matérn5/2
kernel. We use different length-scales for each input dimensions, learned via Automatic Relevance
Determination (ARD) (Neal, 2012). For our Random Forests (RF), we use scikit-learn’s RF imple-
mentation (Pedregosa et al., 2011). We set the fraction of features per split to 0.5, the minimum
number of samples for a split to 5 and disable bagging. We also adapt our RF implementation to use
the same split selection approach as Hutter et al. (2014).

For our constrained Bayesian Optimization (cBO) approach, we use scikit-learn’s RF classifier,
trained on previously explored configurations, to predict the probability of a configuration being
feasible. We then weight our EI acquisition function by this probability of feasibility, as proposed
by Gardner et al. (2014). We normalize our EI acquisition function before considering the probability
of feasibility, to ensure both values are in the same range. This cBO implementation is used in the
Spatial use-case as in Nardi et al. (2019).

For all experiments, we set the model weight to 5 = 10 and the model quantile to v = 0.05, see
Appendices J and 1. Before the main BO loop, PrBO is initialized by random sampling D + 1 points
from the prior, where D is the number of input dimensions. We use the public implementation of
Spearmint?, which uses 2 random samples for initialization. We set the bandwidth of our KDE priors
to 100n~ 7, where D is the number of input dimensions, see Appendix H. We normalize our KDE
priors before computing the pseudo-posterior, to ensure they are in the same range as our model. We
also implement interleaving which randomly samples a point to explore during BO with 10% chance.

We optimize EI using a multi-start local search, similar to the one used in SMAC (Hutter et al., 2011).
Namely, we start local searches on the 10 best points evaluated in previous BO iterations, on the 10
best performing points from a set of 10,000 random samples and on the 10 best performing points
from 10,000 random samples drawn from the prior. To compute the neighbors of each of these 30
total points, we normalize the range of each objective to [0, 1] and randomly sample four neighbors
from a truncated Gaussian centered at the original value and with standard deviation o = 0.2.

We use four synthetic benchmarks in our experiments.

Branin. The Branin function is a well-known synthetic benchmark for optimization problems (Dixon,
1978). The Branin function has two input dimensions and three global minima.

SVM. Hyperparameter-optimization benchmark in 2D based on Profet (Klein et al., 2019). This
benchmark is generated by a generative meta-model built using a set of SVM classification models
trained on 16 OpenML tasks. The benchmark has two input parameters, corresponding to SVM
hyperparameters.

FC-Net. Hyperparameter and architecture optimization benchmark in 6D based on Profet. The
FC-Net benchmark is generated by a generative meta-model built using a set of feed-forward neural
networks trained on the same 16 OpenML tasks as the SVM benchmark. The benchmark has six
input parameters corresponding to network hyperparameters.

XGBoost. Hyperparameter-optimization benchmark in 8D based on Profet. The XGBoost benchmark
is generated by a generative meta-model built using a set of XGBoost regression models in 11 UCI
datasets. The benchmark has eight input parameters, corresponding to XGBoost hyperparameters.

The search spaces for each benchmark are summarized in Table 1. For the Profet benchmarks, we
report the original ranges and whether or not a log scale was used. However, in practice, Profet’s
generative model transforms the range of all hyperparameters to a linear [0, 1] range. We use Emukit’s
public implementation for these benchmarks (Paleyes et al., 2019).

D SVM Regret Comparison

In addition to the experiments in Section 4.2, we show the performance of PrBO on the SVM
benchmark. Figure 5 shows a log regret comparison of PrBO, Spearmint, Prior Sampling and
10,000x RS. We note that the results are similar to the other benchmarks in Figure 3. Namely, PrBO

3https://github.com/HIPS/Spearmint

11

Table 1: Search spaces for our synthetic benchmarks. For the Profet benchmarks, we report the
original ranges and whether or not a log scale was used.

Benchmark | Parameter name Parameter values Log scale
Branin x1 —5,10]
2 0,15 -
SVM C [e710, e v
v e—lO7 610] v
FCNet learning rate 107°%1071 v
batch size 8,128] v
units layer 1 16,512] v
units layer 2 16,512] v
dropout rate 11 0.0,0.99] -
dropout rate 12 0.0,0.99] -
XGBoost learning rate 107°%,1071 v
gamma 0, 2] -
L1 regularization [107°,10°] v
L2 regularization 107°,10%] v
number of estimators 10, 500] -
subsampling 0.1,1] -
maximum depth 1,15] -
minimum child weight [0, 20] -

--@-RS (10,000x) Prior Sampling --B-PrBO Weak Prior ------ Initialization
--A-—-Spearmint --%--PrBO No Prior -<4-PrBO Prior

-
Q04 SVM
(@)] 4
) |
o s
0] i e -
= —10| 4 et
e
n q"""“"‘""-0—-~0---'___
é"—zo

0 100 200

Number of Evaluations

Figure 5: Log regret comparison of PrBO with and without priors, 10,000x RS, and Spearmint (mean
+/- one std on 5 repetitions). We run the benchmark for 200 iterations.

with a strong prior outperforms RS and spearmint. PrBO also outperforms Spearmint with a weak
prior and even with a uniform prior.

E Spatial Real-world Application

Spatial (Koeplinger et al., 2018) is a programming language and corresponding compiler for
the design of application accelerators on reconfigurable architectures, e.g. field-programmable gate
arrays (FPGAs). These reconfigurable architectures are a type of logic chip that can be reconfigured
via software to implement different applications. Spatial provides users with a high-level of
abstraction for hardware design, so that they can easily design their own applications on FPGAs. It
allows users to specify parameters that do not change the behavior of the application, but impact the
runtime and resource-usage (e.g. logic units) of the final design. During compilation, the Spatial
compiler estimates the ranges of these parameters and estimates the resource-usage and runtime
of the application for different parameter values. These parameters can then be optimized during
compilation in order to achieve the design with the fastest runtime. We fully integrate PrBO as a pass
in Spatial’s compiler, so that Spatial can automatically use PrBO for the optimization during
compilation. This enables Spatial to seamlessly call PrBO during the compilation of any new
application to guide the search towards the best design on an application-specific basis.

In our experiments, we introduce for the first time the automatic optimization of three Spatial
real-world applications, namely, 7D shallow and deep CNNs, and a 10D molecular dynamics grid
application. Previous work by Nardi et al. (2019) had applied automatic optimization of Spatial

12

Table 2: Search space, priors, and expert configuration for the MD Grid application. The default
value for each parameter is shown in bold.

Parameter name | Type Values Expert | Prior
loop_grid0_z Ordinal 1,2,..,15,16] | 1 [0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05]
loop_q Ordinal 1,2,..,31,32] | 8 [0.08, 0.08, 0.02, 0.1, 0.02, 0.02, 0.02,
0.1, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.1, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02]
par_load Ordinal (1,2, 4] 1 [0.45, 0.1, 0.45]
loop_p Ordinal 1,2,..,31,32] | 2 [0.1, 0.1, 0.1, 0.1, 0.05, 0.03, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02]
loop_grid0_x Ordinal 1,2,..,15,16] | 1 [0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05]
loop_gridl_z Ordinal 1,2,..,15,16] | 1 [0.2,0.2,0.1, 0.1, 0.07, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03]
loop_grid0_y Ordinal [1,2,..,15,16] | 1 [0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05]
ATOMI1LOOP Categorical | [false, true] true [0.1, 0.9]
ATOM2LOOP Categorical | [false, true] true [0.1, 0.9]
PLOOP Categorical | [false, true] true [0.1, 0.9]
—— RS —— HyperMapper = —— PrBO —— Expert Configuration === Initialization
24M Shallow CNN 24M Deep CNN M MD Grid
18M 15M 3m
o1 > 9M B 1w
S\ S] L S
% 9M % 3M 2
S ™ \\ 3 2™ 5200k \k%
5M M 50k
0 20 a0 0 20 70 20 50 00 15,
Number of Evaluations Number of Evaluations Number of Evaluations

Figure 6: Log regret comparison of RS, HyperMapper, PrBO, and manual optimization on Spatial
(mean +/- one std on 5 repetitions). Vertical lines are initialization.

parameters on a set of benchmarks but in our work we focus on real-world applications raising the bar
of state-of-the-art automated hardware design optimization. PrBO is used to optimize the parameters
to find a design that leads to the fastest runtime. The search space for these three applications is
based on ordinal and categorical parameters; to handle these discrete parameters in the best way we
implement and use a RF surrogate instead of a GP as explained in Appendix C. These parameters are
application specific and control how much of the FPGAs’ resources we want to use to parallelize
each step of the application’s computation. The goal is to find which steps are more important to
parallelize in order to achieve the fastest runtime. Some parameters also control whether we want
to enable pipeline scheduling or not, which consumes resources but accelerates runtime. We refer
to Koeplinger et al. (2018) and Nardi et al. (2019) for more details on Spatial’s parameters.

The three Spatial benchmarks also have feasibility constraints in the search space, meaning that
some parameter configurations are infeasible. A configuration is considered infeasible if the final
design requires more logic resources than what the FPGA provides, i.e., it is not possible to perform
FPGA synthesis because the design does not fit in the FPGA. To handle these constraints, we use our
c¢BO implementation (Appendix C). Our goal is thus to find the design with the fastest runtime under
the constraint that the design fits the FPGA resource budget.

13

Table 3: Search space, priors, and expert configuration for the Shallow CNN application. The default
value for each parameter is shown in bold.

Parameter name | Type Values Expert | Prior

LP Ordinal [1,4,8,16,32] | 16 [0.4, 0.065, 0.07, 0.065, 0.4]

P1 Ordinal [1,2,3,4] 1 [0.1, 0.3,0.3,0.3]

SP Ordinal [1,4,8,16,32] | 16 [0.4, 0.065, 0.07, 0.065, 0.4]

P2 Ordinal [1,2,3,4] 4 [0.1,0.3,0.3,0.3]

P3 Ordinal 1,2,..,31,32] | 1 [0.1, 0.1, 0.033, 0.1, 0.021, 0.021, 0.021,

0.1, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021, 0.021, 0.021, 0.021, 0.021, 0.021,
0.021]

P4 Ordinal 1,2,..,47,48] | 4 [0.08, 0.0809, 0.0137, 0.1, 0.0137,
0.0137,0.0137, 0.1, 0.0137, 0.0137,
0.0137, 0.05, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137, 0.0137, 0.0137,
0.0137,0.0137, 0.0137]

x276 Categorical | [false, true] true [0.1, 0.9]

Table 4: Search space, priors, and expert configuration for the Deep CNN application. The default
value for each parameter is shown in bold.

Parameter name | Type Values Expert | Prior

LP Ordinal [1,4,8,16,32] | 8 [0.4, 0.065, 0.07, 0.065, 0.4]

P1 Ordinal [1,2,3,4] 1 [0.4,0.3,0.2,0.1]

SP Ordinal [1,4,8,16,32] | 8 [0.4, 0.065, 0.07, 0.065, 0.4]

P2 Ordinal [1,2,3,4] 2 [0.4,0.3,0.2,0.1]

P3 Ordinal 1,2,..,31,32] | 1 [0.04, 0.01, 0.01, 0.1, 0.01, 0.01, 0.01,

0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.2, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.1, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.2]

P4 Ordinal 1,2,..,47,48] | 4 [0.05, 0.005, 0.005, 0.005, 0.005, 0.005,
0.005, 0.13, 0.005, 0.005, 0.005, 0.005,
0.005, 0.005, 0.005, 0.2, 0.005, 0.005,
0.005, 0.005, 0.005, 0.005, 0.005, 0.11,
0.005, 0.005, 0.005, 0.005, 0.005, 0.005,
0.005, 0.2, 0.005, 0.005, 0.005, 0.005,
0.005, 0.005, 0.005, 0.005, 0.005, 0.005,
0.005, 0.005, 0.005, 0.005, 0.005, 0.1]
x276 Categorical | [false, true] true [0.1, 0.9]

14

--@-PrBO Weak Multivariate Prior --#-PrBO Weak Univariate Prior ------ Initialization

--4-- PrBO Multivariate Prior --%--PrBO Univariate Prior
Branin SVM 5 FC-Net XGBoost
10 -5 4 - - 1

AN g, g

= 5 > il g g o

g 1 £ 10 -&...:: f}fii i i L N -

o O [} 1 2 & PRRTS

a \ a i 2 | by T R e

£ E_15 s o, s =

2 2 A P Azl | Nt
g ~ 2 .

8 S 1 4 S = _3 e -——

B
0 50 100 150 200 0 50 100 150 200 0 100 200 300 0 100 200 300
Number of Evaluations Number of Evaluations Number of Evaluations Number of Evaluations

Figure 7: Log regret comparison of PrBO with multivariate and univariate KDE priors (mean +/- one
std on 5 repetitions). We run the benchmarks for 100D iterations, capped at 300.

We compare the performance of PrBO to RS, manual optimization, and HyperMapper (Nardi et al.,
2019), the current state-of-the-art BO solution for Spatial. For a fair comparison, both PrBO and
HyperMapper use RFs as predictive probabilistic model. The priors for these Spatial applications
take the form of a list of probabilities, containing the probability of each ordinal or categorical value
being good. Each benchmark also has a default configuration, which ensures all methods start with
at least one feasible configuration. The priors, expert configuration, and default configurations for
these benchmarks were provided once by an unbiased Spatial developer, who is not an author
of this paper, and kept unchanged during the entire project. The search space, priors, and expert
configuration for each application are presented in Tables 2, 3, and 4.

Figure 6 shows the log regret on the Spatial benchmarks. PrBO vastly outperforms RS in all
benchmarks; notably, RS does not improve over the default configuration in MD Grid. PrBO is also
able to leverage the expert’s prior and outperform the expert’s configuration in all benchmarks (2.68 x,
1.06x, and 10.4 x speedup for shallow CNN, deep CNN, and MD Grid, respectively). Compared to
HyperMapper, PrBO achieves better performance in the MD Grid benchmark (1.28 x speedup). For
context, this is a significant improvement in the FPGA field, where a 10% improvement could qualify
for acceptance in a top-tier conference. In the CNN benchmarks, PrBO converges to the minima
regions faster than HyperMapper (1.58 x and 1.4 x faster for shallow and deep respectively). Thus,
PrBO leverages the best of both worlds (the expert’s prior knowledge and BO) to provide a new state
of the art for Spatial.

F Multivariate Prior Comparison

Figure 7 shows a log regret comparison of PrBO with univariate and multivariate KDE priors. We
show results for univariate and multivariate versions of our weak and strong KDE priors. We use the
best 10D points out of 1,000D and 10,000,000D randomly sampled points to create our weak and
strong priors, respectively. We use the same points to create the univariate and multivariate priors.
We recall that the goal of these synthetic priors is to have an unbiased prior for our experiments,
whereas manual priors would be biased by our own expertise of these benchmarks. In practice, users
will manually define these priors without needing additional experiments.

In all cases PrBO achieves similar performance with univariate and multivariate priors. For the
Branin and SVM benchmarks, the weak multivariate prior leads to slightly better results than the
weak univariate prior. However, the difference is small, in the order of 10~* and 1076, respectively.

Surprisingly, for the XGBoost benchmark, the univariate version for both the weak and strong priors
lead to better results than their respective multivariate counterparts, though, once again, the difference
in performance is small, around 0.2 and 0.03 for the weak and strong prior, respectively, whereas the
XGBoost benchmark can reach values as high as f () = 600. Our hypothesis is that this difference
comes from the bandwidth estimator (100n_%), which leads to larger bandwidths, consequently,
smoother priors, when a multivariate prior is constructed.

15

-@- TPE -A- PrBO ----- Initialization

Branin SVM EC-Net. XGBoost
q 0 . 0 7.5
” = 9 o o
® s @ o 5
IR 2 -5 k g-1 5 501
Yoo g m @ o« 2 1
ol N) < e T B z ,g
2 \ S e - g2 o “2l
= \ m=tice=: | T_19 L 2 =Y ik
E o5l | E \ E s E 0.0 Wity
@ L @ 3 @ = :\h G g S R
2 I o \ - > RN
g tand g-15 \5 S- P g-25 o=
—-10 M| | 7 STt | T4 ‘:‘zh:'?_":::::":“:“ - blesy
SR s -
0 50 100 150 200 0 50 100 150 201 0 100 200 300 0 100 200 301
Number of Evaluations Number of Evaluations Number of Evaluations Number of Evaluations

Figure 8: Log regret comparison of PrBO and TPE (mean +/- one std on 5 repetitions). We run the
benchmarks for 100D iterations, capped at 300.

Branin Branin Branin Branin
10 10

Simple Regret
Simple Regret
Simple Regret
Simple Regret

SVM

9.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 FCNet 01 FCNet) FCNet FCNet

s XGBoost 8 XGBoost s XGBoost XGBoost

> o

Simple Regret
N

Simple Regret

(@a=10b=4 b a=1,b=0 (©)a=10,b=0

Figure 9: Simple regret of sampling from the prior with different priors for our synthetic benchmarks
(mean +/- one std on 5 repetitions). A more informative prior gives better results in all benchmarks.

G Comparison to TPE

We compare PrBO to the TPE approach of Bergstra et al. (2011) on our four synthetic benchmarks. We
use Hyperopt’s implementation* of TPE, which defines priors as one of a list of supported distributions,
including Uniform, Normal, and Lognormal distributions. Since it is not possible to input the KDE
priors introduced in Section 4.1 into the TPE algorithm, we instead use manually defined priors in

*https://github.com/hyperopt/hyperopt

16

the format supported by the Hyperopt implementation. We note that this is straightforward in PrBO,
as PrBO supports any form of probability distribution as a prior. We are then able to perform a fair
comparison between the two approaches that use the same exact prior.

We define the prior for each input parameter as a Gaussian distribution with mean at the optimum and
with standard deviation equal to half of the parameters range. For the Branin prior, we arbitrarily
choose one of the optima, i.e., the (7, 2.275) optimum. For the Profet benchmarks, we use the
minimum out of 10,000,000D random samples as an approximation of the optimum. We note that
using Hyperopt’s Gaussian priors leads to an unbounded search space, which sometimes leads TPE
to suggest parameter configurations outside the allowed parameter range. To prevent these values
from being evaluated, we convert values outside the parameter range to be equal to the upper or lower
range limit, depending on which limit was exceeded.

Figure 8 shows a log regret comparison between PrBO and TPE on our four synthetic benchmarks.
PrBO outperforms TPE in three out of four benchmarks, namely, Branin, SVM, and FCNet. We
note, however, that the good performance of TPE on XGBoost may be an artifact of the approach of
clipping values to its maximal or minimal values as mentioned above. In fact, the clipping nudges
TPE towards promising configurations in this case, since XGBoost has low function value near the
edges of the search space. Overall, the better performance of PrBO is expected, since PrBO is able to
combine prior knowledge with more sample-efficient surrogates, which leads to better performance.

H Prior Bandwidth Selection

We show the effect of different bandwidth sizes on the univariate KDE prior. For that, we compare
the performance of sampling from the prior and PrBO with different bandwidth sizes. We use scipy’s
Gaussian KDE implementation and modify its bandwidth size with four variations of Scott’s Rule
(mfﬁ. We experiment with a = 1, b = 4 (scipy’s default); a = 1, b = 0; a = 10, b = 0; and
a = 100, b = 0. Note that larger values for a and smaller values for b lead to smaller bandwidths.
For each bandwidth size, we show results for an array of varying quality priors. We select a constant
10D points in each prior and vary the size of the uniform random sample dataset. We follow the
following rule: we use the best performing 10D samples to create the prior from a random sample
dataset size of 1OD1%; we refer to this prior as %. We experiment with dataset sizes varying from
10D to 107 D.

Figure 9 shows the performance of purely sampling from the prior. We note that, in most cases,
using a larger dataset leads to better results. This is expected, sampling more points means we find
more points near the optima and, therefore, the prior will be built with points closer to the optima.
Likewise, we note that smaller bandwidths often lead to better results, especially as more points
are sampled. This is also expected, since a smaller bandwidth means the prior distribution will be
more peaked around the optima. However, there are a couple of exceptions to these trends. First,
for the Branin, sampling more points does not lead to a better prior when we use a = 1, b = 4, this
is likely because the multiple minima of the Branin and the bigger bandwidth lead the prior to be
oversmoothed, missing the peaks near the optima. Second, smaller bandwidths do not always lead
to better performance for smaller random sample datasets. This happens because we find points
farther from the optima in these datasets and end up computing priors peaked at points that are farther
from the optima, i.e., our priors become misleading. The effects of these misleading priors can be
especially noticed for the 100% random samples dataset. Based on these results, we set our KDE

priors to 100n~ D, where D is the number of input dimensions.

Figure 10 shows the performance of PrBO for different priors. The same observations from Figure 9
hold here. Namely, sampling more points and using smaller bandwidths lead to better performance.
Also, the 100% dataset once again leads to inconsistent results, since it is a misleading prior for PrBO.
Based on these results, we use the smallest bandwidth and largest dataset in our experiments, i.e.
a = 100,b = 0, and 0.0001%. Intuitively, this is a reasonable choice, since these priors will be our
closest approximation to an ideal prior that is centered exactly at the optima, where sampling from
the prior always leads to the optimum. Our results in Figures 9 and 10 shows that this combination
leads to the best results in all benchmarks, as expected.

Figure 11 shows a performance comparison between PrBO and sampling from the prior. For these
results, we use ¢ = 100,b = 0 and compare the regret of PrBO and sampling from the prior for

17

Branin Branin Branin Branin
10 10

10 10
o o o o
o 8 [[5
o L o o
o o o o
Q 6 9] Q)
o 4 4 o
2 Q 2 2
Q 4 Q Q Q
£ £ £ £
[n [n
olo1000s QBZ 01 021 0.00 0.01

SVM 0.10 SVM
@o.08
L
5
Z2o.06
9
5004
£
& 0.02
280 0.00 0.00 0,00 0.00 0.00 0.00 0.00 22 0.00 0,00 0.00 0,00 0.00 0.00
. g, Yo O, Q0O O : %, Yo, Yo O, O, O O
0, %0, °% %, %, %0, ° 0, %0, s %, % % ©
o% A J% 01% 003}000(a% oo 1% 02% 00\)&000\)
& Yo s Yo
0.10 FCNet 01 FCNet 01 FCNet 0.10 FCNet

8 XGBoost 8 XGBoost 8 XGBoost 8 XGBoost
o o
[26
o o
& &
o4 355 P
=y a
£> £>
(2] 1.07 (2}
0

(@a=1b=4 b a=1,b=0 (©)a=10,b=0 (d) a=100,b=0

Figure 10: Simple regret of PrBO with different priors for our synthetic benchmarks (mean +/- one
std on 5 repetitions). A more informative prior gives better results in all benchmarks.

—— Prior Sampling -@- 100% -®- 1% @ - Initialization
-@- PrBO -@- 0.01% 0.0001%

Branin SVM 0 FC-Net

XGBoost

-
=)
=)

Log Simple Regret
o
-
/‘//ﬂ
T
i
1
i
1
i
i
1
i
|
1
1
I
1
Log Simple Regret
b

7.5]

5.0}

2.5

==

0.0}

Log Simple Regret
Log Simple Regret

=2.5
60 0

15 20 5 10 15 20 0

5 20 40 40 60 80
Number of Evaluations Number of Evaluations Number of Evaluations

0
Number of Evaluations

Figure 11: Log simple regret comparison between PrBO and sampling from the prior. The shaded
lines are mean +/- one std error.

different dataset sizes. PrBO performs better for nearly all dataset sizes and benchmarks. This is
expected as PrBO complements the prior with its probabilistic model, learning which regions within
the prior are better to explore and also recovering from misleading priors. There are two exceptions
on the SVM benchmark, where sampling from the prior performs slightly better for 0.01% and
0.0001% datasets. We note, however, that the difference in performance is extremely small, in the
order of 10~ and 1077, respectively.

18

Branin

XGBoost

Simple Regret
Simple Regret
Simple Regret

Figure 12: Comparison of PrBO with a weak KDE prior and different values for the v hyperparameter
on our four synthetic benchmarks (mean +/- one std on 5 repetitions). We run PrBO with a budget of
10D function evaluations.

Branin

|
N

XGBoost

|
o v s w

Simple Regret

|
~

Figure 13: Comparison of PrBO with a weak KDE prior and different values for the 3 hyperparameter
on our four synthetic benchmarks(mean +/- one std on 5 repetitions). We run PrBO with a budget of
10D function evaluations.

I ~-Sensitivity Study

We show the effect of the « hyperparameter introduced in Section 3.2 for the quantile identifying the
points considered to be good. To show this, we compare the performance of PrBO with a weak KDE
prior and different v values. We use our weak prior as it leads to greater variation in performance,
which helps to visualize better the impact of the « hyperparameter. For all experiments, we initialize
PrBO with D + 1 random samples and then run PrBO until it reaches 10D function evaluations. For
each v value, we run PrBO five times and report mean and standard deviation.

Figure 12 shows the results of our comparison. We first note that values near the lower and higher
extremes lead to degraded performance, this is expected, since these values will lead to an excess of
either exploitation or exploration. Further, we note that PrBO achieves similar performance for all
values of 7y, however, v = 0.03 and v = 0.05 consistently lead to better performance, with v = 0.05
usually leading to lower deviation.

J [-Sensitivity Study

We show the effect of the 5 hyperparameter introduced in Section 3.3 for controlling the influence of
the prior over time. To show the effects of 3, we compare the performance of PrBO with a weak KDE
prior and different 5 values on our four synthetic benchmarks. We use our weak prior as it leads to
greater variation in performance, which helps to visualize better the impact of the 8 hyperparameter.
For all experiments, we initialize PrBO with D 4 1 random samples and then run PrBO until it
reaches 10D function evaluations. For each 3 value, we run PrBO five times and report mean and
standard deviation.

Figure 13 shows the results of our comparison. We note that values of g that are too low (near 0.01)
or too high (near 1,000) lead to lower performance. This shows that putting too much emphasis on
the model or the prior will lead to degraded performance, as expected. Further, we note that 5 = 10
lead to the best performance in three out of our four benchmarks. This result is reasonable, as § = 10
means PrBO will put more emphasis on the prior in early iterations, when the predictive model is still
not accurate, and slowly shift towards putting more emphasis on the model as the model sees more
data and becomes more accurate.

19

