
Appendix to Hyperparameter Transfer
Across Developer Adjustments

Danny Stoll1, Jörg K.H. Franke1, Diane Wagner1, Simon Selg1 & Frank Hutter1,2
1University of Freiburg

2Bosch Center for Artificial Intelligence
{stolld,frankej,wagnerd,selgs,fh}@cs.uni-freiburg.de

A Pseudocode

Algorithm 1 Sampling strategy in transfer TPE
Input: Current hyperparameter space Xnew, previous hyperparameter space Xold,

config ranking of previous optimization C, budget bnew

1: Decompose Xnew = (Xboth ∪ Xboth,range-only-new) × Xonly-new
2: Discard configs in C that have hyperparameter values in Xboth,range-only-new
3: Project configs in C to space Xboth, to yield config ranking Cboth
4: Fit TPE model Mboth for Xboth on Cboth
5: for t in 1, . . . , bnew do
6: if is random fraction then . From TPE implementation, e.g., 1/3 of cases
7: Sample xnew from prior on Xnew
8: else if no model for Xnew then
9: Sample xboth from Xboth according to Mboth

10: for hyperparameter range XHi

both,range-only-new 6= ∅ in Xboth,range-only-new do

11: Set p :=
|XHi

both,range-only-new|

|XHi
new |

12: Sample xi from prior on XHi

both,range-only-new

13: Set xi
both := xi with probability p

14: Sample xonly-new from prior on Xonly-new
15: Combine xboth with xonly-new to yield sample xnew
16: else
17: Fit TPE model Mnew for Xnew on current observations
18: Sample xnew from Xnew according to Mnew

return

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.

B Transfer TPE Sampling Illustration

Figure 1: Sampling in T2PE for hyperparameter additions / removals.

C Benchmark Suite Details

C.1 Overview

Table 1: Benchmarks overview
Benchmark #Hyperparameters Old #Hyperparameters New #Tasks

FCN-A 6 5 4
FCN-B 6 8 4

NAS-A 6 6 3
NAS-B 3 6 3

XGB-A 5 9 10
XGB-B 6 6 10

SVM-A 2 2 10
SVM-B 2 2 10

C.2 FCN-A & FCN-B

Budget For FCN-A the budget is set to 100. For FCN-B, additional to the changes in the search
space (Table 4), the budget is increased from 50 to 100.

Table 2: Values for integer coded hyperparameters in FCN benchmarks
Hyperparameter Values

Units Layer {1, 2} (16, 32, 64, 128, 256, 512)
Dropout Layer {1, 2} (0.0, 0.3, 0.6)
Initial Learning Rate (0.0005, 0.001, 0.005, 0.01, 0.05, 0.1)
Batch Size (8, 16, 32, 64)

2

Table 3: Search spaces in FCN-A. Numerical hyperparameters are encoded as integers, see Table 2
for specific values for these hyperparameters.

Steps Hyperparameter Range/Value Prior

1 # Units Layer 1 1 -
1 # Units Layer 2 1 -
1 Batch Size {0, . . . , 3} Uniform

1, 2 Dropout Layer 1 {0, . . . , 2} Uniform
1, 2 Dropout Layer 2 {0, . . . , 2} Uniform
1, 2 Activation Layer 1 {ReLu, tanh} Uniform
1, 2 Activation Layer 2 {ReLu, tanh} Uniform
1, 2 Initial Learning Rate {0, . . . , 5} Uniform
1, 2 Learning Rate Schedule Constant Uniform

2 # Units Layer 1 5 -
2 # Units Layer 2 5 -
2 Batch Size 1 -

Table 4: Search spaces in FCN-B. Numerical hyperparameters are encoded as integers, see Table 2
for specific values for these hyperparameters.

Steps Hyperparameter Range/Value Prior

1 Activation Layer 1 tanh -
1 Activation Layer 2 tanh -
1 Learning Rate Schedule Constant -

1, 2 # Units Layer 1 {0, . . . , 5} Uniform
1, 2 # Units Layer 2 {0, . . . , 5} Uniform
1, 2 Dropout Layer 1 {0, . . . , 2} Uniform
1, 2 Dropout Layer 2 {0, . . . , 2} Uniform
1, 2 Initial Learning Rate {0, . . . , 5} Uniform
1, 2 Batch Size {0, . . . , 3} Uniform

2 Activation Layer 1 {ReLu, tanh} Uniform
2 Activation Layer 2 {ReLu, tanh} Uniform
2 Learning Rate Schedule Cosine -

C.3 NAS-A & NAS-B

Table 5: Search spaces in NAS-A.
Steps Hyperparameter Range/Value Prior

1, 2 0→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
1, 2 0→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
1, 2 2→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform

2 0→ 1 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform

3

Table 6: Search spaces in NAS-B.
Steps Hyperparameter Range/Value Prior

1 0→ 1 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 0→ 2 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 0→ 3 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 1→ 2 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 1→ 3 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 2→ 3 { none, skip-connect, conv1x1, conv3x3 } Uniform

2 0→ 1 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 0→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 0→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 2→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform

C.4 SVM-A & SVM-B

Table 7: Search spaces in SVM-A.
Steps Hyperparameter Range/Value Prior

1 Kernel Radial -
1 Degree {2, . . . , 5} Uniform

1, 2 Cost [2−10, 210] Log-uniform

2 Kernel Polynomial -
2 γ [2−5, 25] Log-uniform

Table 8: Search spaces in SVM-B.
Steps Hyperparameter Range/Value Prior

1 Cost [2−5, 25] Log-uniform

1, 2 γ 1 -
1, 2 Degree 5 -
1, 2 Kernel {Polynomial, Linear, Radial} Uniform

2 Cost [2−10, 210] Log-uniform

4

C.5 XGB-A & XGB-B

Table 9: Search spaces in XGB-A
Steps Hyperparameter Range/Value Prior

1 Colsample-by-tree 1 -
1 Colsample-by-level 1 -
1 Minimum child weight 1 -
1 Maximum depth 6 -

1, 2 Booster Tree -
1, 2 # Rounds {1, . . . , 5, 000} Uniform
1, 2 Subsample [0, 1] Uniform
1, 2 Eta [2−10, 20] Log-uniform
1, 2 Lambda [2−10, 210] Log-uniform
1, 2 Alpha [2−10, 210] Log-uniform

2 Colsample-by-tree [0, 1] Uniform
2 Colsample-by-level [0, 1] Uniform
2 Minimum child weight [20, 27] Log-uniform
2 Maximum depth {1, . . . , 15} Uniform

Table 10: Search spaces in XGB-B
Steps Hyperparameter Range/Value Prior

1 Colsample-by-tree 1 -
1 Colsample-by-level 1 -
1 Minimum child weight 1 -
1 Maximum depth 6 -

1, 2 Booster { Linear, Tree } -
1, 2 # Rounds {1, . . . , 5, 000} Uniform
1, 2 Subsample [0, 1] Uniform
1, 2 Eta [2−10, 20] Log-uniform
1, 2 Lambda [2−10, 210] Log-uniform
1, 2 Alpha [2−10, 210] Log-uniform

2 Colsample-by-tree 1 -
2 Colsample-by-level 0.5 -
2 Minimum child weight 10 -
2 Maximum depth 10 -

5

D Detailed Speedups

0

2

4

6

FCN-A FCN-B

0

2

4

6

Sp
ee

du
p

O
ve

rT
PE

NAS-A NAS-B

0

2

4

6

SVM-A SVM-B

10 20 40
TPE Evaluations for

Reference Objective [#]

0

2

4

6

XGB-A

10 20 40

XGB-B

Best First + Transfer TPE Transfer TPE Best First

Figure 2: Speedup of transfer TPE, best-first, and their combination, over TPE across tasks for each
of 8 benchmarks. The previous HPO has a budget of 10 evaluations. The violins estimate densities of
the task means. The horizontal line in each violin shows the mean across these task means. In each
plot, the budget for the TPE reference increases.

6

0

2

4

6

8

10

12
FCN-A FCN-B

0

2

4

6

8

10

12

Sp
ee

du
p

O
ve

rT
PE

NAS-A NAS-B

0

2

4

6

8

10

12
SVM-A SVM-B

10 20 40
TPE Evaluations for

Reference Objective [#]

0

2

4

6

8

10

12
XGB-A

10 20 40

XGB-B

Best First + Transfer TPE Transfer TPE Best First

Figure 3: Speedup of transfer TPE, best-first, and their combination, over TPE across tasks for each
of 8 benchmarks. The previous HPO has a budget of 20 evaluations. The violins estimate densities of
the task means. The horizontal line in each violin shows the mean across these task means. In each
plot, the budget for the TPE reference increases.

7

0
2
4
6
8

10
12
14
16
18
20
22

FCN-A FCN-B

0
2
4
6
8

10
12
14
16
18
20
22

Sp
ee

du
p

O
ve

rT
PE

NAS-A NAS-B

0
2
4
6
8

10
12
14
16
18
20
22

SVM-A SVM-B

10 20 40
TPE Evaluations for

Reference Objective [#]

0
2
4
6
8

10
12
14
16
18
20
22

XGB-A

10 20 40

XGB-B

Best First + Transfer TPE Transfer TPE Best First

Figure 4: Speedup of transfer TPE, best-first, and their combination, over TPE across tasks for each
of 8 benchmarks. The previous HPO has a budget of 40 evaluations. The violins estimate densities of
the task means. The horizontal line in each violin shows the mean across these task means. In each
plot, the budget for the TPE reference increases.

8

E Failure Rates

10 20 40
0

2

4
Fa

ile
d

R
un

s
[%

]
10 Previous Evaluations

10 20 40
TPE Evaluations for

Reference Objective [#]

20 Previous Evaluations

10 20 40

40 Previous Evaluations

Best First TPE Transfer TPE

Figure 5: Failure rates for transfer TPE, best-first, and TPE across 8 benchmarks. The violins estimate
densities of the task means. The horizontal line in each violin shows the mean across these task
means. The plots from left to right utilize increasing budget for the pre-adjustment hyperparameter.
In each plot, the budget for the TPE reference increases.

10 20 40
0

25

50

75

Fa
ile

d
R

un
s

[%
]

10 Previous Evaluations

10 20 40
TPE Evaluations for

Reference Objective [#]

20 Previous Evaluations

10 20 40

40 Previous Evaluations

Drop Unimportant Only Optimize New

Figure 6: Percent of runs that never reach the reference objective for the drop-unimporant and
only-optimize-new approach. Each data point for the violins represents the mean percentage of
failures for a benchmark. The line in each violin shows the mean across these benchmark means.
Plots from left to right increase in budget for the pre-adjustment hyperparameter optimization. In
each plot, the budget of the TPE reference increases.

9

F Control Study: TPE for Different Random Seed Ranges

As a sanity check, and to gauge the influence of random seeds, we compare TPE to itself with
different seed ranges. In general we observe little differences in TPE and TPE2, with the exception
of one outlier task (Figure 7).

10 20 40
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

O
ve

rT
PE

10 Previous Evaluations

10 20 40
TPE Evaluations for

Reference Objective [#]

20 Previous Evaluations

10 20 40

40 Previous Evaluations

Figure 7: Speedup of TPE over TPE2 across 8 benchmarks. The violins estimate densities of the
benchmark means. The horizontal line in each violin shows the mean across these benchmark
means. The plots from left to right utilize increasing budget for the pre-adjustment hyperparameter
optimization. In each plot, the budget for the TPE reference increases.

G Control Study: Random Search vs TPE

As a sanity check, and for context, we compare TPE to random search (Figure 8).

10 20 40
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Sp
ee

du
p

O
ve

rT
PE

10 Previous Evaluations

10 20 40
TPE Evaluations for

Reference Objective [#]

20 Previous Evaluations

10 20 40

40 Previous Evaluations

Figure 8: Speedup of random search over TPE across 8 benchmarks. The violins estimate densities
of the benchmark means. The horizontal line in each violin shows the mean across these benchmark
means. The plots from left to right utilize increasing budget for the pre-adjustment hyperparameter
optimization. In each plot, the budget for the TPE reference increases.

10

	Pseudocode
	Transfer TPE Sampling Illustration
	Benchmark Suite Details
	Overview
	FCN-A & FCN-B
	NAS-A & NAS-B
	SVM-A & SVM-B
	XGB-A & XGB-B

	Detailed Speedups
	Failure Rates
	Control Study: TPE for Different Random Seed Ranges
	Control Study: Random Search vs TPE

