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Abstract—The objective of this research is to push the frontiers in Automated Machine Learning, specifically targeting

Deep Learning. We analyse ChaLearn’s Automated Deep Learning challenge whose design features include: (i) Code

submissions entirely blind-tested, on five classification problems during development, then ten others during final testing.

(ii) Raw data from various modalities (image, video, text, speech, tabular data), formatted as tensors. (iii) Emphasis on

”any-time learning” strategies by imposing fixed time/memory resources and using the Area under Learning curve as

metric. (iv) Baselines provided, including ”Baseline 3”, combining top-ranked solutions of past rounds (AutoCV, AutoNLP,

AutoSpeech,and AutoSeries). (v) No Deep Learning imposed. Principal findings: (1) The top two winners passed all final

tests without failure, a significant step towards true automation. Their solutions were open-sourced. (2) Despite our effort

to format all datasets uniformly to encourage generic solutions, the participants adopted specific workflows for each

modality. (3) Any-time learning was addressed successfully, without sacrificing final performance. (4) Although some

solutions improved over Baseline 3, it strongly influenced many. (5) Deep Learning solutions dominated, but Neural

Architecture Search was impractical within the time budget imposed. Most solutions relied on fixed-architecture pre-trained

networks, with fine-tuning. Ablation studies revealed the importance of meta-learning, ensembling, and efficient data

loading, while data-augmentation is not critical.

Index Terms—AutoML, Deep Learning, Meta-learning, Neural Architecture Search, Model Selection, Hyperparameter

Optimization
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1 INTRODUCTION

The year of 2019 has seen the success of several ma-

chine learning competitions we organized in the Au-

tomated Deep Learning (AutoDL) challenge series [1],

*The first three authors contributed equally. The other authors are in al-

phabetical order of last name. The corresponding author is: Zhengying

Liu (zhengying.liu@inria.fr), with Université Paris-Saclay.

which provides a reusable benchmark in the domain

of Automated Machine Learning (AutoML) applied to

Deep Learning. The AutoML problem asks whether

one could have one single algorithm (an AutoML algo-

rithm) that can perform learning on a large spectrum of

data and always has consistently good performance,
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removing the need for human expertise (which is

exactly the opposite of No Free Lunch theorems [2],

[3], [4]). Our AutoDL challenges encompass many

domains in which Deep Learning has been successful:

computer vision, natural language processing, speech

recognition, as well as classic tabular data (feature-

vector representation).

AutoML is crucial to accelerate data science and

reduce the need for data scientists and machine learn-

ing experts. For this reason, many efforts have been

made to achieve true AutoML, both in academia

and the private sector. In academia, AutoML chal-

lenges [5] have been organized and collocated with

top machine learning conferences such as ICML and

NeurIPS to motivate AutoML research in the ma-

chine learning community. The winning approaches

from such prior challenges (e.g. auto-sklearn [6]) are

now widely used both in research and in industry.

More recently, interest in Neural Architecture Search

(NAS) has exploded [7], [8], [9], [10], [11]. On the

industry side, many companies such as Microsoft [12]

and Google are developing AutoML solutions. Google

has also launched various AutoML [13], NAS [14],

[15], [16], [17], and meta-learning [18], [19] research

efforts. Most of the above approaches, especially those

relying on Hyper-Parameter Optimization (HPO) or

NAS, require significant computational resources and

engineering time to find good models. Additionally,

reproducibility is impaired by undocumented heuris-

tics [20].

The motivation behind this AutoDL challenge se-

ries is thus two-fold. First, we wish to continue pro-

moting the community’s research interests on AutoML

to build universal AutoML solutions that can be ap-

plied to any task (as long as the data is collected and

formatted in the same manner). By choosing tasks in

which Deep Learning methods excel, we put gentle

pressure on the community to improve on Automated

Deep Learning. Second, our challenges can serve as

reusable benchmarks for fairly evaluating AutoML ap-

proaches, on a wide range of domains. Since computa-

tional resources and time cost can be a non-negligible

factor, we introduce an any-time learning metric called

Area under Learning Curve (ALC) (see Section 2.3) for

the evaluation of participants’ approaches, taking into

consideration both the final performance (e.g. accu-

racy) and the speed to achieve this performance (using

wall-time). As far as we know, the AutoDL challenges

are the only competitions that adopt a similar any-time

learning metric.

Acknowledging the difficulty of engineering uni-

versal AutoML solutions, we first organized four pre-

liminary challenges. Each of them focused on a specific

application domain. These included: AutoCV for im-

ages, AutoCV2 for images and videos, AutoNLP for

natural language processing (NLP) and AutoSpeech

for speech recognition. Then, during NeurIPS 2019 we

launched the final AutoDL challenge that combined all

these application domains, and tabular data. All these

challenges shared the same competition protocol and

evaluation metric (i.e. ALC) and provided data in a

similar format. All tasks were multi-label classification

problems.

For domain-specific challenges such as AutoCV,

AutoCV2, AutoNLP and AutoSpeech, the challenge

results and analysis are presented in [1]. In this work,

we focus on the final AutoDL challenge with all

domains combined together. Some of the principal

questions we aimed at answering in this challenge

ended up being answered, with the help of fact sheets

that participants filled out, and some from the post-

challenge experiment, as detailed further in the paper.

The main highlights are the briefly summarized.

First of all, were the tasks of the challenge of a

difficulty adapted to push the state-of-the-art in Au-

tomated Deep Learning? On one hand YES, since (1)
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the top two ranking participants managed to pass all

final tests without code failure and delivered solutions

on new tasks (trained and tested without human inter-

vention), performing significantly better than the base-

line methods, within the time/memory constraints,

and (2) all teams used Deep Learning as part of their

solutions. This confirms that Deep Learning is well

adapted to the chosen domains (CV, NLP, speech).

As further evidence that we hit the right level of

challenge duration and difficulty, 90% of teams found

the challenge duration sufficient and 50% of teams

found the time and computational resources sufficient.

On the other hand NO, since (1) all of the top-9 teams

used a domain-dependent approach, treating each

data modality separately (i.e. using hard-coded if..else

clauses and will probably fail on new unseen domains

such as other sensor data); and (2) the time budget was

too constraining to do any Neural Architecture Search;

and (3) complex heterogeneous ensembles including

non Deep Learning methods were used.

Secondly, was the challenge successful in foster-

ing progress in “any-time learning”? The learning

curve examples in Figures 2 and 10a show that for

most datasets, convergence was reached within 20

minutes. A fast increase in performance early on in

the learning curve demonstrates that the participants

made a serious effort to deliver solutions quickly,

which is an enormous asset in many applications

needing a quick turnover and for users having modest

computational resources.

Finally, from the research point of view, a burning

question is whether progress was made in “meta-

learning”, the art of learning from past tasks to per-

form better on new tasks? There is evidence that the

solutions provided by the participants generalize well

to new tasks, since they performed well in the final test

phase. To attain these results, seven out of the nine

top ranking teams reported that they used the pro-

vided “public” datasets for meta-learning purposes.

In Section 5.1 we used ablation studies to evaluate the

importance of using meta-learning and in Section 5.2

we analyzed how well the solutions provided meta-

generalize.

Thus, while we are still far from an ultimate Au-

toML solution that learns from scratch for ALL do-

mains (in the spirit of [17]), we made great strides with

this challenge towards democratizing Deep Learn-

ing by significantly reducing human effort. The in-

tervention of practitioners is reduced to formatting

data in a specified way; we provide code for that at

https://autodl.chalearn.org, as well as the code of the

winners.

The rest of this work is organized as follows. In

Section 2, we give a brief overview of the challenge de-

sign (see [21] for detailed introduction). Then, detailed

descriptions of winning methods are given in Section

4. Post-challenge analyses, including ablation study

results, is presented in Section 5. Lastly, we conclude

the work in Section 6.

2 CHALLENGE DESIGN

2.1 Data

In AutoDL challenges, raw data (images, videos, au-

dio, text, etc) are provided to participants formatted in

a uniform tensor manner (namely TFRecords, a stan-

dard generic data format used by TensorFlow). For

images with native compression formats (e.g. JPEG,

BMP, GIF), we directly use the bytes. Our data reader

decodes them on-the-fly to obtain a 4D tensor. Video

files in mp4/avi format (without the audio track) are

used in a similar manner. For text datasets, each exam-

ple (i.e. a document) is a sequence of integer indices.

Each index corresponds to a word (for English) or

character (for Chinese) in a vocabulary given in the

metadata. For speech datasets, each example is repre-

sented by a sequence of floating numbers specifying
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Fig. 1: Distribution of AutoDL challenge dataset

domains with respect to compressed storage size in

giga-bytes and total number of examples for all 66

AutoDL datasets. We see that the text domain varies

a lot in terms of number of examples but remains

small in storage size. The image domain varies a lot in

both directions. Video datasets are large in storage size

in general, without surprise. Speech and time series

datasets have fewer number of examples in general.

Tabular datasets are concentrated and are small in

storage size.

the amplitude at each timestamp, similar to uncom-

pressed WAV format. Lastly, tabular datasets’ feature

vector representation can be naturally considered as a

special case of our 4D tensor representation.

For practical reasons, each dataset was kept under

2.5 GB, which required sometimes reducing image

resolution, cropping, and/or downsampling videos.

We made sure to include application domains in

which the scales varied a lot. We formatted around

100 datasets in total and used 66 of them for AutoDL

challenges: 17 image, 10 video, 16 text, 16 speech

and 7 tabular. The distribution of domain and size is

visualized in Figure 1. All datasets marked public can

be downloaded on corresponding challenge websites 1

1. https://autodl.lri.fr/competitions/162

and information on some meta-features of all AutoDL

datasets can be found on the “Benchmark” page2

of our website. All tasks are supervised multi-label

classification problems, i. e. data samples are provided

in pairs {X,Y }, X being an input 4D tensor of shape

(time, row, col, channel) and Y a target binary vector

(withheld from in test data).

For the datasets of AutoDL challenge, we won’t

release their identities as we will very probably reuse

them in future challenges. But we recall their name,

domain and other meta-features in Table 1. These

datasets will appear in our analysis frequently.

2.2 Blind testing

A hallmark of the AutoDL challenge series is that the

code of the participants is blind tested, without any

human intervention, in uniform conditions imposing

restrictions on training and test time and memory

resources, to push the state-of-the-art in automated

machine learning. The challenge had 2 phases:

1) A feedback phase during which methods

were trained and tested on the platform on

five practice datasets, without any human in-

tervention. During the feedback phase, the

participants could make several submissions

per day and get immediate feedback on a

leaderboard. The feedback phase lasted 4

months. Obviously, since they made so many

submissions, the participants could to some

extent get used to the feedback datasets. For

that reason, we also had:

2) A final phase using ten fresh datasets. Only

ONE FINAL CODE submission was allowed

in that phase.

Since this was a complete blind evaluation dur-

ing BOTH phases, we provided additional “public”

2. https://autodl.chalearn.org/benchmark
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TABLE 1: Datasets of the AutoDL challenge, for both phases. The final phase datasets (meta-test datasets) vary

a lot in terms of number of classes, number of training examples, and tensor dimension, compared to those in

the feedback phase. This was one of the difficulties of the AutoDL challenge. “chnl” codes for channel, “var” for

variable size, “CE pair” for “cause-effect pair”. More information on all 66 datasets used in AutoDL challenges

can be found at https://autodl.chalearn.org/benchmark.

Class Sample number Tensor dimension

# Dataset Phase Topic Domain num. train test time row col chnl

1 Apollon feedback people image 100 6077 1514 1 var var 3

2 Monica1 feedback action video 20 10380 2565 var 168 168 3

3 Sahak feedback speech time 100 3008 752 var 1 1 1

4 Tanak feedback english text 2 42500 7501 var 1 1 1

5 Barak feedback CE pair tabular 4 21869 2430 1 1 270 1

6 Ray final medical image 7 4492 1114 1 976 976 3

7 Fiona final action video 6 8038 1962 var var var 3

8 Oreal final speech time 3 2000 264 var 1 1 1

9 Tal final chinese text 15 250000 132688 var 1 1 1

10 Bilal final audio tabular 20 10931 2733 1 1 400 1

11 Cucumber final people image 100 18366 4635 1 var var 3

12 Yolo final action video 1600 836 764 var var var 3

13 Marge final music time 88 9301 4859 var 1 1 1

14 Viktor final english text 4 2605324 289803 var 1 1 1

15 Carla final neural tabular 2 60000 10000 1 1 535 1

datasets for practice purposes and to encourage meta-

learning.

We ran the challenge on the Codalab platform

(http://competitions.codalab.org), which is an open

source project of which we are community lead. Co-

dalab is free for use for all. We use to run the cal-

culations a generous donation of Google of 100,000

cloud units. We prepared a docker including many

machine learning toolkits and scientific programming

utilities, such as Tensorflow, Pytorch and scikit-learn.

We ran the jobs of the participants in virtual machines

equipped with NVIDIA Tesla P100 GPUs. One VM

was entirely dedicated to the job of one participant

during its execution.

2.3 Metric

AutoDL challenges encourage any-time learning by

scoring participants with the Area under the Learning

Curve (ALC) (see definition in Eq. 1, and examples

of learning curves can in Figure 2). The participants

can train in increments of a chosen duration (not nec-

essarily fixed) to progressively improve performance,

until the time limit is attained. Performance is mea-

sured by the NAUC or Normalized Area Under ROC

Curve (AUC) NAUC = 2 × AUC − 1 averaged over

all classes. Multi-class classification metrics are not

being considered, i. e. each class is scored indepen-

dently. Since several predictions can be made during

the learning process, this allows us to plot learning

curves, i. e. “performance” (on test set) as a function

of time. Then for each dataset, we compute the Area
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Fig. 2: Learning curves of top-9 teams (together with

one baseline) on the text dataset Viktor from the Au-

toDL challenge final phase. We observe different pat-

terns of learning curves, revealing various strategies

adopted by participating teams. The curve of Deep-

Wisdom goes up quickly at the beginning but stabilizes

at an inferior final performance (and also inferior any-

time performance) than DeepBlueAI. The fact that these

two curves cross each other suggests that one might

be able to combine these 2 methods to improve the

exploration-exploitation trade-off. In terms of number

of predictions made during the whole train/predict

process (20 minutes), many predictions are made by

DeepWisdom and DeepBlueAI but (much) fewer are

made by the other teams. Finally, although different

patterns are found, some teams such as team zhaw, sur-

romind and automl freiburg show very similar patterns.

This is because all teams adopted a domain-dependent

approach and some teams simply used the code of

Baseline 3 for certain domains (text in this case).

under Learning Curve (ALC). The time axis is log

scaled (with time transformation in Eq. 2) to put

more emphasis on the beginning of the curve. This

way, we encourage participants to develop techniques

that improve performance rapidly at the beginning

of the training process. This should be important to

treat large redundant and/or imbalanced datasets and

small datasets alike, e. g. by treating effectively redun-

dancy in large training datasets or using learning ma-

chines pre-trained on other data if training samples are

scarce. Finally, in each phase, an overall rank for the

participants is obtained by averaging their ALC ranks

obtained on each individual dataset. The average rank

in the final phase is used to determine the winners.

2.4 Baseline 3 of AutoDL challenge

As in previous challenges (e.g. AutoCV, AutoCV2,

AutoNLP and AutoSpeech), we provide 3 baselines

(Baseline 0, 1 and 2) for different levels of use: Baseline

0 is just constant predictions for debug purposes,

Baseline 1 a linear model, and Baseline 2 a CNN (see

[21] for details). In the AutoDL challenge, we provide

additionally a Baseline 3 which combines the winning

solutions of previous challenges. And for benchmark-

ing purposes, we ran Baseline 3 on all 66 datasets in all

AutoDL challenges (public or not) and the results are

shown in Figure 3. Many participants used Baseline 3

as a starting point to develop their own method. For

this reason, we describe in this section the components

of Baseline 3 in some details.

2.4.1 Vision domain: winning method of

AutoCV/AutoCV2

The wining solution of AutoCV1 and AutoCV2 Chal-

lenges [21], i.e., kakaobrain, is based on Fast Au-

toAugment [22], which is a modified version of the

AutoAugment [23] approach. Instead of relying on

human expertise, AutoAugment [23] formulates the
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search for the best augmentation policy as a dis-

crete search problem and uses Reinforcement Learn-

ing to find the best policy. The search algorithm is

implemented as a Recurrent Neural Network (RNN)

controller, which samples an augmentation policy S,

combining image processing operations, with their

probabilities and magnitudes. S is then used to train a

child network to get a validation accuracy R, which is

used to update the RNN controller by policy gradient

methods.

Despite a significant improvement in performance,

AutoAugment requires thousands of GPU hours even

with a reduced target dataset and small network. On

the other hand, Fast AutoAugment [22] finds effective

augmentation policies via a more efficient search strat-

egy based on density matching between a pair of train

datasets, and a policy exploration based on Bayesian

optimization over stratified k-folds splits of the train-

ing dataset. The winning team (kakaobrain) of AutoCV

implemented a light version of Fast AutoAugment,

replacing the 5-folds by a single fold search and using

a random search instead of Bayesian optimization.

The backbone architecture used is ResNet-18 (i.e.,

ResNet [24] with 18 layers).

2.4.2 Text domain: winning method of AutoNLP

For the text domain, Baseline 3 uses the code from the

2nd place team upwind flys in AutoNLP since we

found that upwind flys’s code was easier to adapt in

the challenge setting and gave similar performance to

that of 1st place (DeepBlueAI).

The core of upwind flys’s solution is a meta-

controller dealing with multiple modules in the

pipeline including model selection, data preparation

and evaluation feedback. For the data preparation

step, to compensate for class imbalance in the Au-

toNLP datasets, upwind flys first calculates the data

distribution of each class in the original data. Then,

they randomly sample training and validation exam-

ples from each class in the training set, thus balancing

the training and validation data by up- and down-

sampling. Besides, upwind flys prepares a model pool

including fast lightweight models like LinearSVC [25],

and heavy but more accurate models like LSTM [26]

and BERT [27]. They first use light models (such as

linear SVC), but the meta-controller switches eventu-

ally to other models such as neural networks, with

iterative training. If the AUC drops below a threshold

or drops twice in a row, the model is switched, or the

process is terminated and the best model ever trained

is chosen, when the pool is exhausted.

2.4.3 Speech domain: winning method of Au-

toSpeech

Baseline 3 uses the approach of the 1st place winner of

the AutoSpeech challenge: PASA NJU. Interestingly,

PASA NJU, has developed one single approach for

the two sequence types of data, i.e. speech and text.

As time management is key for optimizing any time

performance, as measured by the metric derived from

the ALC, the best teams have experimented with

various data selection and progressive data loading

approaches. Such decisions allowed them to create

a trade-off between accelerating the first predictions

while ensuring a good and stable final AUC. For

instance PASA NJU truncated speech samples from

22.5s to 2.5s, and started with loading 50% of the sam-

ples for the 3 first training loops, however preserving a

similar balance of classes, loading the rest of the data

from the 4th training loop. As for feature extraction,

MFCC (Mel-Frequency Cepstral Coefficients) [28] and

STFT (Short-Time Fourrier Transform) [29] are used. In

terms of model selection and architectures, PASA NJU

progressively increases the complexity of their model,

starting with simple models like LR (Logistic Regres-

sion), LightGBM at the beginning of the training,
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combined later with some light weight pretrained

CNN models like Thin-ResNet-34 (ResNet [24] but

with smaller numbers of filters/channels/kernels) and

VggVox [30], finally (bidirectional) LSTM [26], with

attention mechanism. This strategy allows to make fast

early predictions and progressively improves models

performance over time to optimize the anytime per-

formance metric.

2.4.4 Tabular domain

As there were no previous challenge for the tabular

domain in AutoDL challenge series, the organizers

implemented a simple multi-layer perceptron (MLP)

baseline. Tabular datasets consist of both continuous

values and categories. Categorical quantities are con-

verted to normalized indices. Tabular domains may

have missing values (missing values are replaced by

zero) as well. Therefore, to cope with missing data,

we designed a denoising autoencoder (DAE) [31] able

to interpolate missing values from available data. The

architecture consists of a batch normalization layer

right after input data, a dropout, 4 fully connected

(FC) layers, a skip connection from the first FC layer

to the 3rd layer and an additional dropout after 2nd

FC layer. Then we apply a MLP classifier with 5 FC

layers. All FC layers have 256 nodes (expect the last

layers of DAE and classifier) with ReLU activation and

batch normalization. We keep the same architecture

for all datasets in this domain. DAE loss is a L1 loss

on non-missing data and classifier loss is a sigmoid

cross entropy.

3 AUTODL CHALLENGE RESULTS

The AutoDL challenge (the last challenge in the Au-

toDL challenges series 2019) lasted from 14 Dec 2019

(launched during NeurIPS 2019) to 3 Apr 2020. It has

had a participation of 54 teams with 247 submissions

in total and 2614 dataset-wise submissions. Among

these teams, 19 of them managed to get a better per-

formance (i.e. average rank over the 5 feedback phase

datasets) than that of Baseline 3 in the feedback phase

and entered the final phase of blind test. According

to our challenge rules, only teams that provided a

description of their approach (by filling out some fact

sheets we sent out) were eligible for getting a ranking

in the final phase. We received 8 copies of these fact

sheets and thus only these 8 teams were ranked. These

teams are (alphabetical order): DeepBlueAI, DeepWis-

dom, frozenmad, Inspur AutoDL, Kon, PASA NJU, sur-

romind, team zhaw. One team (automl freiburg) made a

late submission and isn’t eligible for prizes but will be

included in the post-analysis for scientific purpose.

The final ranking is computed from the perfor-

mances on the 10 unseen datasets in the final phase.

To reduce the variance from diverse factors such as

randomness in the submission code and randomness

of the execution environment (which makes the exact

ALC scores very hard to reproduce since the wall-time

is hard to control exactly), we re-run every submission

several times and average the ALC scores. The average

ALC scores obtained by each team are shown in Figure

4 (the teams are ordered by their final ranking). From

this figure, we see that some entries failed constantly

on some datasets such as frozenmad on Yolo, Kon on

Marge and PASA NJU on Viktor, due to issues in their

code (e.g. bad prediction shape or out of memory

error). On the other hand, some entries crashed only

sometimes on certain datasets, such as Inspur AutoDL

on Tal, whose cause is related to some pre-processing

procedure on text datasets concerning stop words.

Otherwise, the error bars show that the performances

of most runs are statistically consistent.

4 WINNING APPROACHES

In this section, we present in detail the winning so-

lutions from top-3 winning teams (DeepWisdom, Deep-
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(a) All results included (b) Rectangular area in Figure 3a zoomed

Fig. 3: ALC and final NAUC performances of Baseline 3 on ALL 66 AutoDL datasets. Different domains are

shown with different markers. In 3a, the dataset name is shown beside each point except the top-right area,

which is shown in Figure 3b. These figures will serve as a reference to compare future methods with Baseline

3. Numerical values are provided in appendix in Table 4.

BlueAI and PASA NJU) and the team automl freiburg

which made a late submission in the feedback phase

but ranked 5th in the final phase. We considered

interesting to introduce automl freiburg’s approach due

to their contributions and for scientific purpose.

A summary of the winning approaches on each do-

main can be found in Table 2. Another summary using

a categorization by machine learning techniques can

be found in Table 3. We see in Table 2 that almost all

approaches used 5 different methods from 5 domains.

For each domain, the winning teams’ approaches are

much inspired by Baseline 3. In Table 3, we see that

almost all different machine learning techniques are

actively present and frequently used in all domains

(exception some rare cases for example transfer learn-

ing on tabular data). We’ll introduce below in detail

the top-3 winning solutions.

4.1 Approach of DeepWisdom (1st prize)

The team DeepWisdom proposed a unified learning

framework following a meta-learning paradigm. The

framework consists of two parts: meta-train and meta-

inference. The meta-train module takes as input the

”public” datasets, which are augmented by the inter-

nal data augmentation engine, and the objective func-

tion (the ALC metric in the case of the challenge). The

meta-trainer generates solution agents, whose objective

is to search for best models, using search operators.

In the meta-inference step, a new task is processed

taking in one dataset of the challenge. Initial meta-

data and seed data (few-shot samples) are acquired

from the raw dataset. This constitutes the input of

the solution agents obtained by meta-training. Solution

workflow starts after taking in the seed input data,

then it receives more raw data in a streaming way, and

interacts with a whole set of tables for storage to cache

intermediate results and models. Next, we explain the
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Fig. 4: ALC scores of top 9 teams in AutoDL final phase averaged over repeated evaluations (and Baseline

3, for comparison). The entry of top 6 teams are re-run 9 times and 3 times for other teams. Error bars are

shown with (half) length corresponding to the standard deviation from these runs. Some (very rare) entries are

excluded for computing these statistics due to failures caused by the challenge platform backend. The team

ordering follows that of their average rank in the final phase. The domains of the 10 tasks are image, video,

speech/times series, text, tabular (and then another cycle in this order). More information on the task can be

found in Table 1.

domain-specific contributions of DeepWisdom.

In the image domain, ResNet-18 is used in the early

stages of the training and then switched to ResNet-

9 in more advanced stages (The reason is the insta-

bility of ResNet-18). When switching from ResNet-

18 to ResNet-9, to reduce I/O cost, they cache the

mini batches, which have been used for ResNet-18

training in GPU and reuse them for the initial training

phase of ResNet-9, until all these mini batches are

exhausted. The networks are fine-tuned by initialing

from Imagenet pre-trained networks. However, for a

fast transfer learning batch normalization and bias

variables are initialized from scratch. To avoid overfit-

ting, fast auto augmentation is used in the later train-

ing phase, which can automatically search for the best

augmentation strategy on the given dataset, according

to the validation AUC. The searching process is quite

time-consuming but effectively increase the top-AUC.

In the video domain, a mixed convolution (MC3)

network [39] is adopted which consists of 3D convo-

lutions in the early layers and 2D convolutions in the

top layers of the network. The network is pretrained

on the Kinetics dataset and accelerated transferring

to other datasets by re-initializing linear weights and

bias and freezing the first two layers. Due to the

slower speed of 3D than 2D convolution, 3 frames are

extracted at the early phase. Then for longer videos,

an ensemble strategy is applied to combine best pre-

dictions from MC3 with 3-,10- and 12-frames data.

In the speech domain, a model search is applied

in the meta-training part and LogisticRegression and

ThinResnet34 [40] achieve best performance in non-

neural and neural models, respectively. The meta-

trainer firstly learned that validating in the beginning

was wasting the time budget without any effect on

ALC, thus the evaluation agent did not validate when
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model was fitting new streaming data. Secondly, if

amount of training samples was not very large, evalu-

ation metric on training data could avoid overfitting

partly while last best predictions ensemble strategy

was applied.

In the text domain, they decode maximum 5500

samples for each round. Various data preprocess-

ing methods are applied, including email data struc-

ture pre-processing, word frequency filtering and

word segmentation. After tokenization and sequence

padding, both pre-trained and randomly initialized

word embedding (with various dimensions) are used

as word features. The meta-trainer includes several

solutions such as TextCNN, RCNN, GRU, and GRU

with attention [41], [42]. Hyperparameters are set af-

ter a neural network architecture is selected. Also a

weighted ensembling is adopted among top 20 models

based AUC scores.

Finally, in the tabular domain, they batch the

dataset and convert tfdatasets to numpy format pro-

gressively, a weighted ensembling is applied based

on several optimized models including LightGBM,

Catboost, Xgboost and DNN on the offline datasets.

To do so, data is split to several folds. Each fold has a

training set and two validation sets. One validation set

is used to optimize model hyperparameters and other

set to compute ensembling weights.

4.2 Approach of DeepBlueAI (2nd prize)

The DeepBlueAI solution is a combination of meth-

ods that are specific to each modality. Nevertheless,

three concepts are applied across all modalities: 1)

optimizing time budget by reducing the time for data

processing, start with light models and parameters set-

ting to accelerate first predictions; 2) dataset adaptive

strategies and 3) ensemble learning.

For images, the DeepBlueAI team applies a strat-

egy adapted to each specific dataset. They apply a pre-

trained ResNet-18 model. The dataset adaptive strat-

egy is not applied to model selection but to parameters

settings including: image size, steps per epoch, epoch

after which starting validating and fusing results. With

the aim to optimize for final AUC, and make results

more stable, they apply a progressive ensemble learn-

ing method, i.e. for epochs between 5 to 10, the latest

2 predictions are averaged, while after 10 epochs the

5 latest predictions are averaged. When the score on

validation set improves a little, a data augmentation

strategy is adopted by searching for the most suitable

data augmentation strategy for each image dataset

with a small scale version of Fast AutoAugment [43]

limiting the search among 20 iterations in order to

preserve more time for training.

For video, ResNet-18 is used for classification. In

the search for a good trade-off between calculation

speed and classification accuracy, 1/6 of the frames

with respect to the total number are selected. For

datasets with a large number of categories, image size

is increased to 128 to get more details out of it. During

training, when the score of the validation set increases,

predictions are made on the test set, and submitted as

the average of the current highest 5 test results.

For speech, features are extracted with Mel spec-

trogram [44] for Logistic Regression (LR) model and

MFCC [28] for deep learning models. In order to

accelerate the extraction long sequences are truncated

but covering at least 90% of the sequence. Then, to

accelerate first score computation, training data are

loaded progressively, 7% for the first iteration, then

28%, 66% and then all data at 4th iteration, with care

to balance multiple categories, to ensure the models

can learn accurately. As for the models, LR is used

for the first 3 iterations, then from the 4th iteration

using all the data deep learning models, CNN and

CNN+GRU [45] are employed. At the end, the overall

5 best models and the best version of each of the 3
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models are averaged to build a final ensemble. The

iterative data loading is especially effective on large

dataset and plays a significant role in the performance

measured by the metric derived from the ALC.

For text, the dataset size, text length and other

characteristics are automatically obtained, and then

a preprocessing method suitable for the dataset is

adopted. Long texts, over 6000 words are truncated,

and NLTK stemmer is used to extract root features

and filter meaningless words with frequency below 3.

As for model selection, FastText [46], TextCNN [41],

BiGRU [45] are used by their system that generate dif-

ferent model structures and set of parameters adapted

to each dataset. The size of the dataset, the number

of categories, the length of the text, and whether the

categories are balanced are considered to generate the

most suitable models and parameter settings.

For tabular, three directions are optimized: acceler-

ating scoring time, adaptive parameter setting, ensem-

ble learning.

Data is first split into many batches to signifi-

cantly accelerate the data loading and converted from

TFrecords to numpy format. In terms of models, deci-

sion trees LightGBM are adopted to get faster scoring

than with deep learning models. Because LightGBM

supports continuous training, and the model learns

faster in the early stage. During the training phase,

earnings from the previous epochs are much higher

than those from the latter. Therefore, a complete train-

ing is intelligently divided into multiple parts. The

result is submitted after each part to obtain a score

faster.

In terms of adaptive parameter setting, some pa-

rameters are automatically set according to the size of

data and the number of features of the tables. If the

number of samples is relatively large, the ensemble

fraction is reduced. If the original features of the sam-

ple are relatively large, the feature fraction is reduced.

A learning rate decay is applied, starting with a large

value to ensure a speed up in the early training. An

automatic test frequency is adopted. Specifically, the

frequency of testing is controlled based on training

speed and testing speed. If the training is slow and the

prediction is fast, the frequency of the test is increased.

On the contrary, if training is fast and prediction

is slow, the frequency is reduced. This strategy can

improve to higher early scores.

In order to improve generalization, multiple light-

GBM models are used to make an ensemble with a

bagging method.

4.3 Approach of PASA NJU (3rd prize)

The PASA NJU team modeled the problem as three

different tasks: CV (image and video), Sequence

(speech and text) and Tabular (tabular domain).

For the CV task, they preprocessed the data by

analysing few sample instances of each dataset at

training stage (such as image size, number of classes,

video length, etc) in order to standardize the input

shape of their model. Then, simple transformations

(image flip) were used to augment the data. Random

frames were obtained from video files and treated

as image database. For both Image and Video tasks,

ResNet-18 [24] is used. However, SeResnext50 [47]

was used at later stages. Basically, they monitor the

accuracy obtained by the ResNet-18 model and change

the model to the SeResnext50 if no significant im-

provement is observed.

Speech and Text data are treated similarly, i.e.,

as a Sequence task. In a preprocessing stage, data

samples are cut to have the same shape. Their strategy

was to increase the data length as time passes. For

example, they use raw data from 2.5s to 22.5s in

speech task, and from 300 to 1600 words when Text

data is considered. In both cases, hand-crafted feature

extraction methods are employed. For speech data,
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mel spectrogram, MFCC and STFT [29] is used. When

Text is considered, TF-IDF and word embedding is

used. To model the problem, they employed Logistic

Regression at the first stages and use more advanced

Neural Networks at later stages, such as LSTM and

Vggvox Resnet [30] (for speech data), without any

hyperparameter optimization method. In the case of

Vggvox Resnet, pretrained model from Deepwisdom’s

team from AutoSpeech Challenge 2019 [1] was used.

For Tabular data, they divided the entire process

into three stages based on the given time budget,

named Retrieve, Feature, and Model, and employed

different models and data preprocessing methods at

each stage, aiming to have quick responses at early

stages. The main task of the Retrieve stage is to get

the data and predict as soon as possible. Each time a

certain amount of data is acquired, a model is trained

using all the acquired data. Thus, the complexity of

the model is designed to increase with time. The

main task of the Feature stage is to search for good

features. As the Neural Feature Seacher(NFS) [48]

method uses RNN as the controller to generate the

feature sequence, they used the same method and

speed up the process by parallelizing it. Finally, at the

Model stage, the goal is to search for a good model

and hyperparameters. For this, they use hyperopt [49],

which is an open-source package that uses Bayesian

optimization to guide the search of hyperparameters.

4.4 Approach of automl freiburg

In contrast to other teams, automl freiburg adopts

a domain-independent approach but focused only

the computer vision tasks (i.e. image and video

datasets) of this challenge. While for all other tasks

automl freiburg simply submitted the baseline to obtain

the baseline results, they achieved significant improve-

ment on the computer vision tasks w.r.t. the baseline

method. To improve both efficiency and flexibility of

the approach, they first exposed relevant hyperparam-

eters of the previous AutoCV/AutoCV2 winner code

[50] and identified well-performing hyperparameter

configurations on various datasets through hyper-

parameter optimization with BOHB [33]. They then

trained a cost-sensitive meta-model [51] with Auto-

Folio [32] – performing hyperparameter optimization

for the meta-learner – that allows to automatically

and efficiently select a hyperparameter configuration

for a given task based on dataset meta-features. The

proposed approach on the CV task is detailed next.

First, they exposed important hyperparameters of

the AutoCV/AutoCV2 winner’s code [50] such as

the learning rate, weight decay or batch sizes. Addi-

tionally, they exposed hyperparameters for the online

execution (which were hard-coded in previous winner

solution) that control, for example, when to evaluate

during the submission and the number of samples

used. To further increase the potential of the existing

solution, they extended the configuration space to also

include:

• An EfficientNet [52] (in addition to kakaobrain’s

[50] ResNet-18) pre-trained on ImageNet [36];

• The proportion of weights frozen when fine-

tuning;

• Additional stochastic optimizers (Adam [53],

AdamW [54], Nesterov accelerated gradient

[55]) and learning rate schedules (plateau, co-

sine [56]);

• A simple classifier (either a SVM, random for-

est or logistic regression) that can be trained

and used within the first 90 seconds of the

submission.

After the extension of the configuration space,

they optimized the hyperparameters with BOHB [33]

across 300 evaluation runs with a time budget of

300 seconds on eight different datasets (Chucky [57],
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Hammer [58], Munster [59], caltech birds2010 [60],

cifar100 [57], cifar10 [57], colorectal histology [61] and

eurosat [62]). These eight datasets were chosen from

meta-training data to lead to a portfolio of comple-

mentary configurations [63], [64]. Additionally, they

added a robust configuration to the portfolio of con-

figurations that performed best on average across the

eight datasets. Then, they evaluated each configura-

tion of the portfolio for 600 seconds on all 21 image

datasets they had collected. In addition, they searched

for a tenth configuration (again with BOHB), called

the generalist, that they optimized for the average

improvement across all datasets relative to the already

observed ALC scores. In the end, the meta-train-data

consisted of the ALC performance matrix (portfolio

configurations × datasets) and the meta-features from

the 21 datasets. These meta-features consisted of the

image resolution, number of classes, number of train-

ing and test samples and the sequence length (number

of video frames, i.e. 1 for image datasets). In addition,

they studied the importance of the meta features for

the meta-learner, and selected an appropriate sub-

set. To optimize the portfolio further, they applied a

greedy submodular optimization [64], [65] to mini-

mize the chance of wrong predictions in the online

phase. Based on this data, they trained a cost-sensitive

meta-model [51] with AutoFolio [32], which applies

algorithm configuration based on SMAC [34], [66] to

efficiently optimize the hyperparameters of the meta-

learner. Since the meta-learning dataset was rather

small, HPO for the meta-learner could be done within

a few seconds. Lastly, they deployed the learned Auto-

Folio model and the identified configurations into the

initialization function of the winner’s solution code.

The workflow of this approach is shown in Figure 5.

5 POST-CHALLENGE ANALYSES

5.1 Ablation study

To analyze the contribution of different components

in each winning team’s solution, we asked 3 teams

(DeepWisdom, DeepBlueAI and automl freiburg) to carry

out an ablation study, by removing or disabling certain

component (e.g. meta-learning, data augmentation) of

their approach. We will introduce in the following

sections more details on these ablation studies by team

and synthesize thereafter.

5.1.1 DeepWisdom

According to the team DeepWisdom, three of the most

important components leading to the success of their

approach are: meta-learning, data loading and data

augmentation. For the ablation study, these compo-

nents are removed or disabled in the following man-

ner:

• Meta-learning (ML): Here meta-learning in-

cludes transfer learning, pretrain models, and

hyperparameter setting and selection. Meta

learning is crucial to both the final accuracy

performance and the speed of train-predict life-

cycle. For comparison we train models from

scratch instead of loading pretrained models

for image, video and speech data, and use the

default hyperparameter settings for text and

tabular subtasks.

• Data Loading (DL): Data loading is a key factor

in speeding up training procedures to achieve

a higher ALC score. We improve data loading

in several aspects. Firstly, we can accelerate

decoding the raw data formatted in a uniform

tensor manner to numpy formats in a progres-

sive way, and batching the dataset for text and

tabular data could make the conversion faster.

Secondly, the cache mechanism is utilized in
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Fig. 5: Workflow of automl freiburg. The approach first optimizes the hyperparameter configuration (including

choices for training, input pipeline, and architecture) for every task (dataset) in our meta-training set using

BOHB [33]. Afterwards, for each dataset i, the best found configuration λ∗i is evaluated on the other datasets

j ∈ {1, 2, ..., N}, j 6= i to build the performance matrix (configurations× datasets). For training and configuring

the meta-selection model based on performance matrix and the meta-features of the corresponding tasks, the

approach uses AutoFolio [32]. At meta-test time, the model fitted by AutoFolio uses the meta-features of the

test tasks in order to select a well-performing configuration.

different levels of data and feature manage-

ment, and thirdly, video frames are extracted

in a progressive manner.

• Data Augmentation (DA): Fast auto augmen-

tation, time augmentation and a stagewise

spec len configuration for thinresnet34 model

are considered as data augmentation tech-

niques for image, video and speech data re-

spectively.

We carried out experiments on the 10 final phase

datasets with above components removed. The ob-

tained ALC scores are presented in Figure 6. As it

can be seen in Figure 6, Meta-Learning can be con-

sidered one of the most important single component

in DeepWisdom’s solution. Pre-trained models con-

tribute significantly to both accelerating model train-

ing and obtaining higher AUC scores for image, video

and speech data, and text and tabular subtasks benefit

from hyperparameter setting such as model settings

and learning rate strategies. For image, we remove

pretrained models for both ResNet-18 and ResNet-9,

which are trained on the ImageNet dataset with 70%

and 65% top1 test accuracy; for video, we remove the

parts of freezing and refreezing the first two layers.

Then the number of the frames for ensemble models

and replace MC3 model with ResNet-18 model. For

speech, we do not load the pre-trained model which

is pre-trained on VoxCeleb2 dataset, that is we train

the thin-resnet34 model from scratch. For text, we use

default setting, i.e. do not perform meta strategy for

model selections and do not perform learning rate

decay strategy selections. For tabular, with the expe-

rience of datasets inside and outside this competition,

we found two sets of params of lightgbm. The first

hyperparameters focus on the speed of lightgbm train-

ning, it use smaller boost round and max depth, bigger
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Fig. 6: Ablation study for DeepWisdom: We compare

different versions of DeepWisdom’s approach, with

one component of their workflow disabled. “Deep-

Wisdom \ ML” represents DeepWisdom’s original ap-

proach but with Meta-Learning disabled. “DA” code

for Data Augmentation and “DL” for Data Loading.

The method variants are ordered by their average rank

from left to right. Thus we observe that removing Data

Augmentation does not make a lot of difference, while

removing both Meta-Learning and Data Loading im-

pacts the solution a lot. See Section 5.1.1 for details.

learning rates and so on. While the second hyperpa-

rameters focus on the effect of lightgbm trainning, it

can give us a generally better score. We use the default

hyperparameters in lightgbm in the minus version.

Data Loading is a salient component for the ALC

metric in any-time learning. For text, speech and tabu-

lar data, data loading speeds up numpy data conver-

sion to make the first several predictions as quickly

as possible, achieving higher alc scores. In the minus

version, we convert all train tfdatasets to numpy array

in the first round, and alc scores of nearly all datasets

on all modalities decrease steadily compared with full

version solution.

The data augmentation component also helps the

alc scores of several datasets. In the minus version

for speech data we use the fixed spec len config, the

default value is 200. Comparison on Marge and Oreal

datasets is obvious, indicating that longer speech

signal sequences could offer more useful informa-

tion. Fast auto augmentation and test time augmen-

tation enhance performance on image and video data

marginally.

5.1.2 DeepBlueAI

According to the team DeepBlueAI, three of the most

important components leading to the success of their

approach are: adaptive strategies, ensemble learning

and scoring time reduction. For the ablation study,

these components are removed or disabled in the

following manner:

• Adaptive Strategies (AS): In this part, all adap-

tive parameter settings have been cancelled,

such as the parameters settings according to

the characteristics of datasets and the dynamic

adjustments made during the training process.

All relevant parameters are changed to default

fixed values.

• Ensemble Learning (EL): In this part, all the

parts of ensemble learning are removed. In-

stead of fusing the results of multiple models,

the model that performs best in the validation

set is directly selected for testing.

• Scoring Time Reduction (STR): In this part,

all scoring time reduction settings were modi-

fied to default settings. Related parameters and

data loading methods are same as those of

baseline.

As it can be observed in Figure 7, the results

of DeepBlueAI have been greatly improved com-

pared with those of DeepBlueAI \AS \EL \STR (i.e.,

blue bar), indicating the effectiveness of the whole
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Fig. 7: Ablation study for DeepBlueAI: Compari-

son of different versions of DeepBlueAI’s approach

after removing some of the method’s components.

“DeepBlueAI \ AS” represents their approach with

Adaptive Strategy disabled. “EL” codes for Ensemble

Learning and “STR” for Scoring Time Reduction. For

each dataset, the methods are ordered by their av-

erage rank from left to right. While disabling each

component separately yields moderate deterioration,

disabling all of them yields a significant degradation

in performance. See Section 5.1.2.

method. After removing the AS, the score of most

datasets has decreased, indicating that adaptive strate-

gies are better than fixed parameters or models, and

has good generalization performance on different

datasets. When STR is removed, the score of most

datasets is reduced. Because the efficient data pro-

cessing used can effectively reduce the scoring time,

thereby improving the ALC score, which shows the

effectiveness of the scoring time reduction. After EL

is removed, the score of the vast majority of datasets

has decreased, indicating the effectiveness of ensemble

learning to improve the results.

5.1.3 automl freiburg

According to the team automl freiburg, two of the most

important components leading to the success of their

approach are: meta-learning and hyperparameter op-

timization. For the ablation study, these components

are removed or disabled in the following manner:

• Meta-Learning with Random selector (MLR):

This method randomly selects one configura-

tion out of the set of most complementary

configurations (Hammer, caltech birds2010, ci-

far10, eurosat).

• Meta-Learning Generalist (MLG): This

method does not use AutoFolio and always

selects the generalist configuration that was

optimized for the average improvement across

all datasets.

• Hyperparameter Optimization (HPO): Instead

of optimizing the hyperparameters of the meta-

selection model with AutoFolio, this method

simply uses the default AutoFolio hyperparam-

eters.

As previously mentioned, automl freiburg focused

on the computer vision domain (i.e., datasets Ray,

Fiona, Cucumber, and Yolo). The results of their ablation

study, shown in Figure 8, indicate that the hyper-

parameter search for the meta-model overfitted on

the eight meta-train-datasets used (original vs HPO);

eight datasets is generally regarded as insufficient in

the realm of algorithm selection, but the team was

limited by compute resources. However, the perfor-

mance of the non-overfitted meta-model (HPO) clearly

confirms the superiority of the approach over the

random (MLR) and the generalist (MLG) baselines

on all relevant datasets. More importantly, not only

does this observation uncover further potential of au-

toml freiburg’s approach, it is also on par with the top

two teams of the competition on these vision datasets:
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Fig. 8: Ablation study for automl freiburg: Compari-

son of different versions of automl freiburg’s approach.

Since the approach addresses only computer vision

tasks, only results on image datasets (Ray, Cucum-

ber) and video datasets (Fiona, Yolo) are shown. Av-

erage and error bars of ALC scores are computed

over 9 runs. “automl freiburg \ HPO” represents

automl freiburg’s approach with default AutoFolio hy-

perparameters. Likewise, “MLG” stands for the gener-

alist configuration and “MLR” for randomly selecting

a configuration from the pool of the most complemen-

tary configurations. See Section 5.1.3.

average rank 1.75 (automl freiburg) versus 1.75 and

2.5 (DeepWisdom, DeepBlueAI). The authors emphasize

that training the meta-learner on more than eight

meta-train datasets could potentially lead to large

improvements in generalization performance. Despite

the promising performance and outlook, results and

conclusions should be interpreted conservatively due

to the small number of meta-test datasets relevant to

automl freiburg’s approach.

5.2 AutoML generalization ability of winning

methods

One crucial question for all AutoML methods is

whether the method can have good performances on

unseen datasets. If yes, we will say the method has

AutoML generalization ability. To quantitatively mea-

sure this ability, we propose to compare the aver-

age rank of all top-8 methods in both the feedback

phase and the final phase, then compute the Pear-

son correlation (Pearson’s ρ) of the 2 rank vectors

(thus similar to Spearman’s rank correlation [67]).

Concretely, let rX be the average rank vector of top

teams in the feedback phase and rY be that in the

final phase, then the Pearson correlation is computed

by ρX,Y = cov(rX , rY )/σrXσrY .

The average ranks of top methods are shown in

Figure 9, with a Pearson correlation ρX,Y = 0.91 and

p-value p = 5.8×10−4. This means that the correlation

is statistically significant and no leaderboard over-

fitting is observed. Thus the winning solutions can

indeed generalize to unseen datasets. Considering the

diversity of the final phase datasets and the arguably

out-of-distribution final-test meta-features shown in

Table 1, this is a feat from the AutoML community.

Thus it’s highly plausible that we are moving one step

closer to a universal AutoML solution.

5.3 Impact of t0 in the ALC metric

We recall that the Area under Learning Curve (ALC)

is defined by

ALC =

∫ 1

0
s(t)dt̃(t)

=

∫ T

0
s(t)t̃′(t)dt

=
1

log(1 + T/t0)

∫ T

0

s(t)

t+ t0
dt

(1)

where

t̃(t) =
log(1 + t/t0)

log(1 + T/t0)
(2)

Thus t0 parameterizes a weight distribution on the

learning curve for computing the ALC. When t0 is

small, the importance weight at the beginning of the
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Fig. 9: Task over-modeling: We compare performance

in the feedback and the final phase, in an effort to de-

tect possible habituation to the feedback datasets due

to multiple submissions. The average rank of the top-8

teams is shown. The figure suggests no strong over-

modeling (over-fitting at the meta-learning level): A

team having a significantly better rank in the feedback

phase than in the final phase would be over-modeling

(far above the diagonal). The Pearson correlation is

ρX,Y = 0.91 and p-value p = 5.8× 10−4.

curve is large. Actually when t0 varies from 0 to

infinity, we have

lim
t0→0+

ALC(t0) = s(0)

and

lim
t0→+∞

ALC(t0) =
1

T

∫ T

0
s(t)dt.

So a different t0 might lead to different ALC ranking

even if the learning curve s(t) is fixed. It is then to be

answered whether the choice of t0 = 60 in AutoDL

challenge is reasonable. For this, we reflect the impact

of t0 on the ALC scores and the final average ranking

in Figure 10. Observation and discussion can be found

in the caption. We conclude that t0 does affect the

ranking of ALC scores but the final ranking is robust

to changes of t0, justifying the choice of t0 and the

challenge setting.

6 CONCLUSION AND FURTHER WORK

In conclusion, we are encouraged to continue our chal-

lenge series in machine learning with code submission

and blind testing in a well-defined identical computer

environment, with a fixed time and memory budget.

The latest one, the AutoDL challenge, helped pushing

the state of the art in Automated Deep Learning.

Our novel challenge design, with emphasis on “any-

time learning”, permitted to harvest answers to new

questions.

Among other things, the challenge revealed that

Automated Deep Learning methods are ripe for

modalities such as image, video, speech, and text, but

no unified solution emerged across modalities, and

Deep Learning remained weaker than other methods

for tabular data. This raises the question of developing

new universal coding, generic workflows, or universal

neural architectures. A step in this direction could be

to organize a cross-modal Neural Architecture Search

(NAS) challenge, to search for universal architectures.

Intensive search in architecture space was impractical

with the constrained time budget we provided for the

AutoDL challenge, but with one order of magnitude

more computational resources, it may be feasible.

Deep Learning methods have earned the reputa-

tion of being notoriously slow to train and require

prohibitive computational resources in domains such

as video processing. Not so anymore with “any-time

learning methods” allowing users to stop training

early and get reasonable performance. The wining

teams succeeded in climbing the learning curve fast,

without sacrificing the final performance. Transfer

learning (fine tuning of pre-trained models), progres-

sive increase in model complexity, fast data loading,

November 30, 2020 DRAFT



20

(a) Learning curves for the task

Carla

(b) Impact of t0 on the ALC scores

for task Carla.

(c) Average rank among AutoDL

final phase participants, using dif-

ferent t0. The legend is hidden and

is the same as that of Figure 10b.

Fig. 10: Any-time learning vs. fixed-time learning: We evaluate the impact of parameter t0 on the ALC scores

and the final rank. This parameter allows us to smoothly adjust the importance of the beginning of the learning

curve (and therefore the pressure imposed towards achieving any-time learning). When t0 is small, the ALC

puts more emphasis on performances at the beginning of the learning curve and thus favors fast algorithms.

When t0 is large, similar weight is applied on the whole learning curve, performances are uniformly averaged,

so being a little bit slow at the beginning is not that bad, and it is more important to have good final performance

when the time budget is exhausted (fixed-time learning). The tabular dataset Carla is taken as example. The

fact that two learning curves cross each other is a necessary condition for the impact of t0 on their ranking on

this task. Learning curves of top teams on this dataset are shown in 10a. The impact of t0 on the ALC scores of

these curves is shown in 10b. We see that when t0 changes, the ranking among participants can indeed change,

typically the ALC of frozenmad is larger than that of Kon but this is not true for large t0. In 10c, the fact that the

average rank (over all 10 final phase datasets) varies with t0 also implies that t0 can indeed affect the ranking

of ALC on individual tasks. However, we see that the final ranking (i.e. that of average rank) is quite robust

against changes of t0. Very few exceptions exist such as PASA NJU and Inspur AutoDL. Overall, t0 proved

to have little impact, particularly on the ranking of the winners, which is another evidence that top ranking

participants addressed well the any-time learning problem.

and efficient exploration of data space, were key com-

ponents to achieve these results.

The post-challenge analyses revealed the impor-

tance of meta-learning, through ablation studies con-

ducted by winning teams. The teams demonstrated

that generalizing to new unseen datasets is possible,

and improves by meta-learning, thus they effectively

achieved a form of transfer learning. This calls for

further research and we envision that a meta-learning

challenge should be organized, to conduct a more

controlled study. Several settings have been proposed,

including: (1) a challenge on model recommendation,

similar to the movie recommendation Netflix chal-

lenge, in which a sparse matrix with just a few scores
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of models on a few datasets is initially provided and

the goal is to find as quickly as possible the best

performing model on a new dataset; (2) a challenge

proposing training tasks and test tasks, aiming at

training search agents capable of selecting the best

performing models to solve the test tasks; (3) an

on-line meta-learning challenge (or life-long-learning

challenge) in which tasks are made available sequen-

tially to models, who can retain some “memory” of

past tasks to perform better in future tasks.

This challenge was limited to tensor data and

multi-label problems. Other steps towards enlarging

the scope of automated machine learning include

generalizing to more complex data structures. This

is partially addressed by the on-going AutoGraph

challenge. Generalization to other types of tasks was

addressed by the AutoSeries challenge. We intend to

keep proposing more diverse types of data and tasks

to stimulate the community to make progress.

Lastly, challenges are meant to provide fair

and reproducible evaluations removing the inventor-

evaluator bias. However, other types of biases can crop

up. One such bias stems from the choice of datasets.

As organizers, we had to chose datasets with sufficient

modeling difficulty to separate well the participants,

yet not a too high intrinsic difficulty. By modeling dif-

ficulty, we mean the variance in performance between

participants. By intrinsic difficulty we mean (1- the

best attainable performance). Neither quantity being

available to the organizers at the time of selection of

the datasets, they must rely on the performances of

the baseline methods to evaluate the difficulty of the

tasks and thus the choice may be biased. Yet another

type of bias is introduced by the baselime methods

provided to the participants (such as Baseline 3 in this

challenge).

Beyond research results, our challenges have a

long lasting impact since we make available a large

number of “public” datasets, and the code of winning

solutions.
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APPENDIX A

BENCHMARK RESULTS

The numerical results of Baseline 3’s performance

(ALC and final NAUC) on all 66 AutoDL datasets are

shown in Table 4 (due to formatting mechanism, this

may appear in another page).
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TABLE 2: Summary of the five top ranking solutions and their average rank in the final phase. The participant’s

average rank (over all tasks) in the final phase is shown in parenthesis (automl freibug and Baseline 3 were

not ranked in the challenge). Each entry concerns the algorithm used for each domain and is of the form “[pre-

processing / data augmentation]-[transfer learning/meta-learning]-[model/architecture]-[optimizer]” (when

applicable).

Team image video speech text tabular

1.DeepWisdom

(1.8)

[ResNet-18 and ResNet-9

models] [pretrained on

ImageNet]

[MC3 model] [pretrained

on Kinetics]

[fewshot learning ] [LR,

Thin ResNet34 models]

[pretrained on VoxCeleb2]

[fewshot learning] [task

difficulty and similarity

evaluation for model

selection] [SVM,

TextCNN,[fewshot

learning] RCNN, GRU,

GRU with Attention]

[LightGBM, Xgboost,

Catboost, DNN models]

[no pretrained]

2.DeepBlueAI

(3.5)

[data augmentation with

Fast AutoAugment]

[ResNet-18 model]

[subsampling keeping 1/6

frames] [Fusion of 2 best

models ]

[iterative data loader (7,

28, 66, 90%)] [MFCC and

Mel Spectrogram

preprocessing] [LR, CNN,

CNN+GRU models]

[Samples truncation and

meaningless words

filtering] [Fasttext,

TextCNN, BiGRU models]

[Ensemble with restrictive

linear model]

[3 lightGBM models]

[Ensemble with Bagging]

3.Inspur AutoDL

(4)
Tuned version of Baseline 3

[Incremental data loading

and train-

ing][HyperOpt][LightGBM]

4.PASA NJU (4.1)

[shape standardization and

image flip (data

augmentation)][ResNet-18

and SeResnext50]

[shape standardization and

image flip (data

augmentation)][ResNet-18

and SeResnext50]

[data truncation(2.5s to

22.5s)][LSTM, VggVox

ResNet with pretrained

weights of DeepWis-

dom(AutoSpeech2019)

Thin-ResNet34]

[data truncation(300 to

1600 words)][TF-IDF and

word embedding]

[iterative data loading]

[Non Neural Nets models]

[models complexity

increasing over time]

[Bayesian Optimization of

hyperparameters]

5.frozenmad (5)

[images resized under

128x128] [progressive data

loading increasing over

time and epochs]

[ResNet-18 model]

[pretrained on ImageNet]

[Successive frames

difference as input of the

model] [pretrained

ResNet-18 with RNN

models]

[progressive data loading

in 3 steps 0.01, 0.4, 0.7]

[time length adjustment

with repeating and

clipping] [STFT and Mel

Spectrogram

preprocessing] [LR,

LightGBM, VggVox

models]

[TF-IDF and BERT

tokenizers] [ SVM,

RandomForest , CNN,

tinyBERT ]

[progressive data loading]

[no preprocessing] [Vanilla

Decision Tree,

RandomForest, Gradient

Boosting models applied

sequentially over time]

automl freiburg

Architecture and hyperparameters learned offline on

meta-training tasks with BOHB. Transfer-learning on

unseen meta-test tasks with AutoFolio. Models:

EfficientNet [pretrained on ImageNet with AdvProp],

ResNet-18 [KakaoBrain weights], SVM, Random

Forest, Logistic Regression

Baseline 3

Baseline 3

[Data augmentation with

Fast AutoAugment,

adaptive input

size][Pretrained on

ImageNet][ResNet-

18(selected

offline)]

[Data augmentation with

Fast AutoAugment,

adaptive input size,

sample first few frames,

apply stem CNN to reduce

to 3 channels][Pretrained

on ImageNet][ResNet-

18(selected

offline)]

[MFCC/STFT feature][LR,

LightGBM,

Thin-ResNet-34, VggVox,

LSTM]

[resampling training

examples][LinearSVC,

LSTM, BERT]

[interpolate missing

value][MLP of four hidden

layers]
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TABLE 3: Machine learning techniques applied to each of the 5 domains considered in AutoDL challenge.

ML technique image video speech text tabular

Meta-learning

Offline meta-training transferred with AutoFolio [32] based on meta-features (automl freiburg, for image and video)

Offline meta-training generating solution agents, searching for optimal sub-operators in predefined sub-spaces, based on dataset meta-data.

(DeepWisdom)

MAML-like method [18] (team zhaw)

Preprocessing

image cropping and data

augmentation (PASANJU),

fast autoaugment

(DeepBlueAI)

Sub-sampling keeping 1/6

frames and adaptive image

size (DeepBlueAI) Adaptive

image size

MFCC, Mel Spectrogram,

STFT

root features extractions

with stemmer, meaningless

words filtering

(DeepBlueAI)

Numerical and Categorical

data detection and

encoding

Hyperparameter

Optimization

Offline with BOHB [33] (Bayesian Optimization and

Multi-armed Bandit) (automl freiburg) Sequential

Model-Based Optimization for General Algorithm

Configuration (SMAC) [34] (automl freiburg)

Online model complexity

adaptation (PASA NJU)

Online model selection

and early stopping using

validation set (Baseline 3(

flys))

Bayesian Optimization

(PASANJU)

HyperOpt [35]

(Inspur AutoDL)

Transfer learning

Pre-trained on

ImageNet [36] (all teams

except Kon)

Pre-trained on

ImageNet [36] (all top-8

teams except Kon)

MC3 model pretrained on

Kinetics (DeepWisdom)

ThinResnet34 pre-trained

on VoxCeleb2

(DeepWisdom)

BERT-like [27] models

pretrained on FastText
(not applicable)

Ensemble

learning

Adaptive Ensemble

Learning (ensemble latest

2 to 5 predictions)

(DeepBlueAI)

Ensemble Selection [37]

(top 5 validation

predictions are fused)

(DeepBlueAI); Ensemble

models sampling 3, 10, 12

frames (DeepBlueA)

last best predictions

ensemble strategy

(DeepWisdom)

averaging 5 best overall

and best of each model:

LR, CNN, CNN+GRU

(DeepBlueA)

Weighted Ensemble over

20 best models [37]

(DeepWisdom)

LightGBM ensemble with

bagging method [38]

(DeepBlueAI),

Stacking and blending

(DeepWisdom)
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TABLE 4: Numerical values of Baseline 3’s performances on all AutoDL datasets. The ALC score is computed

using equation (1) with t0 = 60 (as in AutoDL challenge). The NAUC score is computed using the last prediction

within a time budget T = 1200 seconds. “n pred” stands for number of predictions made within the time

budget.

Dataset Domain ALC NAUC Duration / sec n pred

munster image 0.9827 0.9993 26.6 6

Chucky image 0.8196 0.9254 1016.5 17

pedro image 0.7784 0.9057 1014.4 23

Decal image 0.8949 0.9267 96.3 7

Hammer image 0.8147 0.8851 327.1 13

ukulele image 0.9642 0.9982 29.3 6

Caucase image 0.7861 0.9238 1012.6 19

beatriz image 0.6138 0.6157 277.4 12

Saturn image 0.9048 0.9953 66.7 6

Hippocrate image 0.8426 0.9410 967.6 12

loukoum image 0.9393 0.9978 310.9 12

Tim image 0.8193 0.9454 1012.8 21

Apollon image 0.6882 0.8314 1011.6 22

Ideal image 0.8491 0.9609 467.5 16

Ray7 image 0.2015 0.2642 988.7 18

freddy image 0.7655 0.9895 184.3 8

Cucumber image 0.6925 0.8192 1008.3 17

adult tabular 0.5213 0.6358 590.5 13

dilbert tabular 0.8500 0.9999 248.7 11

digits tabular 0.8013 0.9934 386.9 12

madeline tabular 0.2219 0.2768 95.7 9

Barak tabular 0.4479 0.5244 334.4 12

Bilal tabular 0.7950 0.9573 224.5 11

carla tabular 0.6834 0.7666 606.9 13

O1 text 0.7929 0.8136 28.9 10

O2 text 0.8443 0.9733 138.8 12

O3 text 0.6231 0.8541 108.8 10

O4 text 0.6908 0.9944 164.8 9

O5 text 0.6267 0.9445 325.8 8

PU1 text 0.5590 0.7183 283.9 11

PU2 text 0.5428 0.7098 276.4 7

PU3 text 0.2471 0.8405 476.3 5

PU4 text 0.5747 0.8819 166.7 5

PU5 text 0.1167 0.4231 747.0 4

PR1 text 0.8448 0.9408 83.5 4

Tanak text 0.7905 0.9214 80.5 10

PR3 text 0.7789 0.9623 79.3 10

PR4 text 0.5410 0.8937 271.4 6

Tal text 0.5224 0.9451 302.8 7

Viktor text 0.0222 0.4162 1089.5 5

data01 time 0.5574 0.9751 1199.3 64

data02 time 0.8902 0.9392 826.3 501

data03 time 0.5980 0.8464 1186.1 119

data04 time 0.6102 0.6878 1197.4 367

data05 time 0.9056 0.9998 1166.9 501

data11 time 0.6900 0.9723 1188.1 95

data12 time 0.4896 0.6614 1179.7 74

data13 time 0.6765 0.9338 1183.0 122

data14 time 0.4638 0.6543 1192.4 124

data15 time 0.7171 0.9881 1190.3 104

data21 time 0.8769 0.9989 1196.7 286

data22 time 0.6567 0.8023 1193.7 90

Oreal time 0.8178 0.9233 1195.6 288

data24 time 0.5691 0.7775 1195.6 208

Sahak time 0.7853 0.9497 1168.9 173

Marge time 0.4327 0.7381 1169.4 18

kraut video 0.6882 0.7231 62.3 8

katze video 0.9072 0.9571 507.4 10

kreatur video 0.7250 0.7529 33.2 6

Homer video 0.4020 0.4898 714.5 8

Isaac2 video 0.7560 0.9871 370.6 15

Formula video 0.8063 0.9749 471.0 17

Fiona video 0.4199 0.5121 920.1 19

Monica1 video 0.4872 0.8493 1013.8 26

Kitsune video 0.2275 0.2546 1013.6 20

Yolo video 0.5917 0.8493 144.8 5
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