SpySMAC: Automated Configuration and
Performance Analysis of SAT Solvers

Stefan Falkner, Marius Lindauer, and Frank Hutter

University of Freiburg
{sfalkner,lindauer,fh}@cs.uni-freiburg.de

Abstract. Most modern SAT solvers expose a range of parameters to
allow some customization for improving performance on specific types
of instances. Performing this customization manually can be challenging
and time-consuming, and as a consequence several automated algorithm
configuration methods have been developed for this purpose. Although
automatic algorithm configuration has already been applied successfully
to many different SAT solvers, a comprehensive analysis of the configu-
ration process is usually not readily available to users. Here, we present
SpySMAC to address this gap by providing a lightweight and easy-to-use
toolbox for (i) automatic configuration of SAT solvers in different set-
tings, (ii) a thorough performance analysis comparing the best found
configuration to the default one, and (iii) an assessment of each param-
eter’s importance using the £ANOVA framework. To showcase our tool,
we apply it to Lingeling and probSAT, two state-of-the-art solvers with
very different characteristics.

1 Introduction

Over the last decade, modern SAT solvers have become more and more sophis-
ticated. With this sophistication, usually the number of parameters inside the
algorithm increases, and the performance may crucially depend on the setting of
these parameters. For example, in the case of the prominent competition-winning
solver Lingeling [3], there are 323 parameters which give rise to approximately
10341 possible settings. Exploring these parameter spaces manually is tedious
and time-consuming at best. Consequently, automated methods for solving this
so-called algorithm configuration problem have been developed to find parameter
settings with good performance on a given class of instances [13,1,17,11].
Despite several success stories of automated configuration of SAT solvers [10,
16,19], the reasons why a configuration system chose a certain parameter set-
ting often remain unclear to SAT solver developers. Especially, information
about the importance of specific parameter settings is usually not provided.
To give more insights into the configuration process of SAT solvers, we present
SpySMAC, a lightweight toolbox that combines: (i) the state-of-the-art algorithm
configuration system SMAC [11], (ii) automatic evaluation comparing the perfor-
mance of the default and the optimized configuration across training and test



instances, and (iii) an automatic method to quantify the importance of param-
eters, ANOVA [12]. In the end, SpySMAC generates a report with relevant tables
and figures that summarize the results and reveal details about the configuration
process. The standardized input and output of SAT solvers allowed us to design
SpySMAC to be very easy to use for both developers and users of SAT solvers.

2 Algorithm Configuration and Analysis

The general task of algorithm configuration consists of determining a well-
performing parameter configuration for a given instance set and a performance
metric (e.g., runtime). To this end, an algorithm configuration system, or config-
urator for short, iteratively evaluates different configurations trying to improve
the overall performance. After a given time budget is exhausted, the configu-
ration process ends, and the configurator returns the best parameter setting
found. The configurator can typically only explore a small fraction of the space
of all possible configurations since that space is exponential in the number of
parameters and evaluating a single configuration requires running it on multiple
instances.

Several different approaches have been taken towards efficiently searching
through the configuration space, among others: iterated local search (ParamILS
[13]), genetic algorithms (GGA [1]), iterated racing procedures (irace [17]), and
model-based Bayesian optimization (SMAC[11]). The Configurable SAT Solver
Challenge (CSSC) [15] recently evaluated these configurators (except irace) and
achieved significant speed-ups for various solvers and benchmarks. For example,
in the CSSC 2014, the PAR10 score! of Lingeling [3], clasp [9], and probSAT [2]
improved by up to a factor of 5, 108 and 1500, respectively. Across a wide range
of solvers on a broad collection of benchmarks, SMAC consistently achieved the
largest speedups in the challenge; therefore, we decided to use it in our tool.

SMAC is a sequential model-based algorithm configuration system: it models
the performance metric based on finished runs (as a function of the parameter
configuration used in each run and characteristics of the instance used), and
uses this model to determine the next promising configuration to evaluate. It
uses random forests as the underlying model [4], methods from Bayesian opti-
mization [5], and applies mechanisms to evaluate poor configurations only on
few instances terminating long runs early [11,13].

To give some insights into the configuration process, different complemen-
tary techniques have been developed towards identifying parameter importance.
These include forward selection of parameters based on an empirical performance
model [14], ablation paths between the default and optimized configuration to
identify the important parameter value flips [8], and functional ANOVA (£ANQVA)
to quantify the importance of parameters in the entire configuration space based
on random forests as empirical performance models [12].

1L PARI0 is the penalized average runtime where timeouts are accounted for 10 time
the runtime cutoff.



Instances

default performance
performance evaluation

configured scatter plot
performance CDF plot

4 \
SMACge
SMACy

PCS file combined cactus plots
run data
—————
addit‘ional ] fAN%OVA parameter
options importance
\ J/
User input SpySMAC_run.py SpySMAC_analyze.py

Fig. 1. Schematic of SpySMAC’s workflow. The only significant user input (left) is needed
to start the configuration phase via SpySMAC_run.py. The n independent SMAC runs
search for a better configuration while SMAC4. only evaluates the default performance.
After all runs have finished, SpySMAC_analyze.py is called to prepare a report showing
details about the configuration process and the final configuration.

Each of these methods has some advantages and disadvantages. The forward
selection approach is the only of the three that can detect patterns relating in-
stance characteristics to well-performing configurations, but forward selection
can be computationally very demanding as it requires the fitting of hundreds
of machine learning models. The ablation path is the only one that directly
quantifies the performance difference of each changed parameter based on new
experiments, but the drawback is that for long ablation paths these experiments
can take even longer than the configuration step. Finally, the functional ANOVA
approach is computationally efficient (it only requires fitting a single machine
learning model and does not require any new algorithm runs) and does not only
quantify which parameters are important but also how well each of the param-
eters’ values perform. While we are ultimately planning to support all of these
methods, SpySMAC’s first version focuses on fANOVA to keep the computational
cost of the analysis step low.

3 SpySMAC’s Framework

The workflow in SpySMAC is as follows. First, the user provides information about
the solver, its parameters and the instance set. Based on that, the configuration
phase (running SMAC) and analysis phase (evaluating performance and parameter
importance) are conducted. Figure 1 shows a schematic workflow.

The solver specifics provided by the user include the solver binary, and a
specification of its parameters and their possible ranges. We use SMAC’s parame-
ter configuration space (PCS) file format. This format allows the declaration of



real, integer, ordinal and categorical parameters, as well as conditional parame-
ters that are only active dependent on other (so-called parent) parameters (e.g.,
subparameters of a heuristic h are only active if h is selected by another parent
parameter). Complex dependencies can be expressed as hierarchies of condition-
alities, as well as forbidden partial assignments of parameters (e.g., if one choice
for a data structure is not compatible with a certain type of preprocessing). For
a detailed introduction, please refer to SpySMAC’s documentation. For the solvers
that competed in the CSSC, these PCS files are already available, which provides
many examples for writing new PCS files.

The user also needs to provide a set of benchmark instances to use for the
configuration step and for the subsequent validation. It is possible to either
specify the training and the test set directly, or to specify a single instance set
that SpySMAC will split into disjoint training and test sets. Splitting the instances
into two sets is necessary to get a unbiased performance estimate on unseen, new
instances, to avoid over-tuning effects.

The configuration phase consists of multiple, independent SMAC runs (which
should take place on the same type of hardware to yield comparable runtimes).
Since the configuration of algorithms is a stochastic process and many local
minima in the configuration space exist, multiple runs of SMAC can be used to
improve the performance of the final configuration found. In principle, one very
long run of SMAC would have the same effect, but multiple runs can be effectively
parallelized on multi-core systems or compute clusters. We emphasize that we
determine the best performing configurations among all SMAC runs based on the
training set, not on the test set. This avoids over-tuning effects, again.

After all configuration runs have finished, the separate evaluation step can
commence. The user simply executes the analyze script, SpySMAC_analyze.py, to
automatically generate a report summarizing the results. This report includes a
performance evaluation of the default configuration and the found configuration
on the test and training instances?, scatter plots to visualize the performance
on each instance, as well as cumulative distribution function (CDF) and cactus
plots to visualize the runtime distributions.

The analysis step can also run £ANOVA based on the performance data col-
lected during the configuration to compute parameter importance, producing a
table with quantitative results for each parameter and plots to visualize the effect
of different parameter values. The fANOVA step is based on a machine learning
model fitted on the combined performance data of all solver runs performed in
the configuration phase. For many solver runs (i.e., hundreds of thousands runs),
even fANOVA’s computations can take up to several hours and require several GB
memory; therefore, £ANOVA is an optional part of the analyzing step.

2 Showing the training and test performance helps to identify over-tuning effects, i.e.,
the performance improved on the training set but not on test set.



Test Performance

. Default Configured Parameter Importance
Average Runtime 47.79 44.24 decolim 18.20
PAR10D 316.00 276.69 cce2wait 5.12
[fimeouts 30 / 302 26 / 302 actvlim 4.24
rdpclslim 4.18
- redoutvlim 3.92
Training Performance I ftmaxeff 3.30
Default Configured phaseneginit 3.22
|Average Runtime 40.43 36.79 synclsglue 2.54
PAR10 248.13 199.33 cardminlen 2.495
Timeouts 23 /299 18 /299 restartinit 2.34

Fig. 2. Performance overview for test and training data (left), and the parameter im-
portance determined by fANOVA for Lingeling on CircuitFuzz (right).

4 Spying on Lingeling and probSAT

In this section, we apply SpySMAC to two solvers and three different benchmarks
from the Configurable SAT Solver Challenge: Lingeling [3] on an instance set
from circuit-based CNF fuzzing (CircuitFuzz [6]), and probSAT [2] on two col-
lections of random satisfiable CNF formulas (7-SAT instances with 90 clauses,
7SAT90-SAT, and 3-SAT instances with 1000 clauses, 3SAT1k-SAT, see [19]).

Figure 2 shows tables generated for the report for the Lingeling example.
By comparing the test and training performance, one can see that SMAC found
a configuration improving over the standard parameter setting. Even though
Lingeling’s default already performed very well on this instance set, SMAC was
still able to lower the average runtime further, and to reduce the number of
timeouts. The table on the right shows the ten most important parameters of
Lingeling on this set. The importance score quantifies the effect of varying a
parameter across all instantiations of all other parameters. A high value corre-
sponds to large variations in the performance meaning it is important to set this
parameter to a specific value (see [12] for more detail).

As an example for probSAT, we used two other scenarios from the CSSC
to show the differences our tool can reveal about the configuration on different
instance sets. Figure 3 displays the kind of performance plots generated for the
report for one of the sets. It clearly shows that configuration successfully im-
proved the performance, reducing mean runtimes for training and test instances
by more than a factor of four.

To demonstrate what insights can be gained from the analysis, Figure 4 shows
the parameter importance plots for the parameter cbl, the constant probSAT
uses to weight the break score in its scoring function. The £ANOVA procedure
reveals this parameter to be the most important one in both scenarios, but the
values differ for the two sets: it should be set high for 7-SAT and low for 3-SAT.
We note that this automatically-derived insight is aligned with expert practice
for setting probSAT’s cbl parameter. By doing thorough sets of experiments,
developers can use our tool to understand the impact of their parameters better,
and to try to find ways to adapt parameters based on prior knowledge, such as
the clause length in our example here.



Test Instances 10 Test Instances

timeout

300 << m e 100x___10x_2x — Default
100 0.8}| — Configured
o)
3
= 06
o —_
3 10 s
> %
€ %04
S 1
(&)
- 0.2
10717
L ¥ "/4’ . '
= 5 0.0
10 1 10 100300 s 07 107 10° 10° 107 10°

Default [sec] N Runtime [sec]

Fig. 3. Example scatter plot (left) and CDF plot (right) from applying SpySMAC to
probSAT on 7SAT90-SAT. Both show that parameter tuning significantly improves the
overall performance across the whole range of runtimes.

240 120
200 100

8 180 8

& S 90

£ 160 S

) S 80

£ £

$ 140 o

70

100 60

83.0 25 30 35 40 45 50 55 6.0 58.0 25 3.0 35 40 45 50 55 6.0
cb1 cbl

Fig.4. Parameter importance plot for the most important parameter cbl on
7SAT90-SAT (left) and 3SAT1k-SAT (right). The plots show the mean performance (blue
line) with confidence intervals (red area) as a function of cbl, marginalized over all
other parameters. The best found configurations set it to 4.35 and 2.86 respectively.

5 Conclusion

We have presented SpySMAC: a tool for automatic SAT solver configuration us-
ing SMAC combined with extensive analysis allowing the user to “spy” into the
configuration process of a solver on a given instance set. The report SpySMAC
generates offers some insight into performance improvements and also quantifies
parameter importance by applying £ANOVA. We have shown for three examples
how the framework works, re-running and analyzing three CSSC scenarios effort-
lessly. For the future, we plan to integrate more methods to evaluate parameter
importance, including ablation [8] and forward selection to identify key parame-
ters [14]. SpySMAC is available at www.ml4aad.org/spysmac under AGPL license
with a long list of examples.



References

10.

11.

12.

13.

14.

15.

Ansétegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I. (ed.) Proceedings of the
Fifteenth International Conference on Principles and Practice of Constraint Pro-
gramming (CP’09). Lecture Notes in Computer Science, vol. 5732, pp. 142-157.
Springer-Verlag (2009)

Balint, A., Schoning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Cimatti and Sebastiani [7], pp. 1629
Biere, A.: Yet another local search solver and lingeling and friends entering the
SAT competition 2014. In: Belov, A., Diepold, D., Heule, M., Jarvisalo, M. (eds.)
Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions. De-
partment of Computer Science Series of Publications B, vol. B-2014-2; pp. 39-40.
University of Helsinki (2014)

Breimann, L.: Random forests. Machine Learning Journal 45, 5-32 (2001)
Brochu, E., Cora, V., de Freitas, N.: A tutorial on Bayesian optimization of ex-
pensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. Computing Research Repository (CoRR) abs/1012.2599
(2010)

Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Cimatti and Sebastiani [7], pp. 44-57

Cimatti, A., Sebastiani, R. (eds.): Proceedings of the Fifteenth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’12), Lecture
Notes in Computer Science, vol. 7317. Springer-Verlag (2012)

Fawcett, C., Hoos, H.: Analysing differences between algorithm configurations
through ablation. Journal of Heuristics pp. 1-28 (2015)

Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187-188, 52-89 (2012)

Hutter, F., Babié¢, D., Hoos, H., Hu, A.: Boosting verification by automatic tuning
of decision procedures. In: O’Conner, L. (ed.) Formal Methods in Computer Aided
Design (FMCAD’07). pp. 27-34. IEEE Computer Society Press (2007)

Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello, C. (ed.) Proceedings of the Fifth Inter-
national Conference on Learning and Intelligent Optimization (LION’11). Lecture
Notes in Computer Science, vol. 6683, pp. 507-523. Springer-Verlag (2011)
Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hy-
perparameter importance. In: Xing, E., Jebara, T. (eds.) Proceedings of the 31th
International Conference on Machine Learning, (ICML’14). vol. 32, pp. 754-762.
Omnipress (2014)

Hutter, F., Hoos, H., Leyton-Brown, K., Stiitzle, T.: ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267-306 (2009)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Identifying key algorithm parameters
and instance features using forward selection. In: Pardalos, P., Nicosia, G. (eds.)
Proceedings of the Seventh International Conference on Learning and Intelligent
Optimization (LION’13), Lecture Notes in Computer Science, vol. 7997, pp. 364—
381. Springer-Verlag (2013)

Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The Configurable SAT Solver Challenge. Computing Research Repository (CoRR)
(2015), http://arxiv.org/abs/1505.01221



16.

17.

18.

19.

KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automati-
cally building local search SAT solvers from components. In: Boutilier, C. (ed.)
Proceedings of the 22th International Joint Conference on Artificial Intelligence
(IJCAT09). pp. 517-524 (2009)

Lépez-Ibdnez, M., Dubois-Lacoste, J., Stiitzle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. rep., IRIDIA, Université
Libre de Bruxelles, Belgium (2011), http://iridia.ulb.ac.be/IridiaTrSeries/
IridiaTr2011-004.pdf

Sakallah, K., Simon, L. (eds.): Proceedings of the Fourteenth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT’11), Lecture Notes
in Computer Science, vol. 6695. Springer (2011)

Tompkins, D., Balint, A., Hoos, H.: Captain jack: New variable selection heuristics
in local search for SAT. In: Sakallah and Simon [18], pp. 302-316



