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Abstract

Perhaps surprisingly, it is possible to predict how
long an algorithm will take to run on a previously
unseen input, using machine learning techniques
to build a model of the algorithm’s runtime as a
function of problem-specific instance features. Such
models have many important applications and over
the past decade, a wide variety of techniques have
been studied for building such models. In this ex-
tended abstract of our 2014 Al Journal article of
the same title, we summarize existing models and
describe new model families and various extensions.
In a comprehensive empirical analyis using 11 algo-
rithms and 35 instance distributions spanning a wide
range of hard combinatorial problems, we demon-
strate that our new models yield substantially bet-
ter runtime predictions than previous approaches
in terms of their generalization to new problem in-
stances, to new algorithms from a parameterized
space, and to both simultaneously.

1 Introduction

NP-complete problems are ubiquitous in Al. Luckily, while
these problems may be hard to solve on worst-case inputs, it is
often feasible to solve even large problem instances that arise
in practice. Less luckily, state-of-the-art algorithms often ex-
hibit extreme runtime variation across instances from realistic
distributions, even when problem size is held constant, and
conversely the same instance can take dramatically different
amounts of time to solve depending on the algorithm used
[Gomes et al., 2000]. There is little theoretical understanding
of what causes this variation. Over the past decade, a consider-
able body of work has shown how to use supervised machine
learning methods to build regression models that provide ap-
proximate answers to this question based on given algorithm
performance data. We refer to such models as empirical per-
formance models (EPMs). These models are useful in a variety
of practical contexts:

e Algorithm selection. This classic problem of selecting
the best from a given set of algorithms on a per-instance
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basis [Rice, 1976; Smith-Miles, 2009; Kotthoff, 2014]
has been successfully addressed by using EPMs to predict
the performance of all candidate algorithms and select-
ing the one predicted to perform best [Brewer, 1995;
Lobjois and Lemaitre, 1998; Fink, 1998; Howe et al.,
2000; Nudelman et al., 2003; Roberts and Howe, 2007;
Xu et al., 2008; Kotthoff et al., 2012].

e Parameter tuning and algorithm configuration.
EPMs are useful for these problems in at least two ways.
First, they can model the performance of a parameterized
algorithm dependent on the settings of its parameters; in
a sequential model-based optimization process, one alter-
nates between learning an EPM and using it to identify
promising settings to evaluate next [Jones er al., 1998;
Bartz-Beielstein et al., 2005; Hutter et al., 2011]. Sec-
ond, EPMs can model algorithm performance dependent
on both problem instance features and algorithm param-
eter settings; such models can then be used to select
parameter settings with good predicted performance on a
per-instance basis [Hutter et al., 2006].

e Generating hard benchmarks. An EPM for one or
more algorithms can be used to set the parameters of exist-
ing benchmark generators in order to create instances that
are hard for the algorithms in question [Leyton-Brown er
al., 2009].

e Gaining insights into instance hardness and algo-
rithm performance. EPMs can be used to assess which
instance features and algorithm parameter values most
impact empirical performance. Some models support
such assessments directly [Ridge and Kudenko, 2007;
Mersmann et al., 2013; Hutter et al., 2014al. For
other models, generic feature selection methods, such
as forward selection, can be used to identify a small
number of key model inputs (often fewer than five)
that explain algorithm performance almost as well as
the whole set of inputs [Leyton-Brown et al., 2009;
Hutter et al., 2013].

While these applications motivate our work, we do not dis-
cuss them in detail in our article; instead, we focus on the
models themselves. The idea of modeling algorithm runtime
is no longer new; however, we have made substantial recent
progress in making runtime prediction methods more general,
scalable and accurate. After a comprehensive review of past



work on runtime prediction from many separate communities,
our Al Journal article [Hutter et al., 2014b] makes four new
contributions:

1. We describe new, more sophisticated modeling tech-
niques (based on random forests and approximate Gaus-
sian processes) and methods for modeling runtime varia-
tion arising from the settings of a large number of (both
categorical and continuous) algorithm parameters.

2. We introduce new instance features for propositional
satisfiability (SAT), travelling salesperson (TSP) and
mixed integer programming (MIP) problems—in particu-
lar, novel probing features and timing features—yielding
comprehensive sets of 138, 121, and 64 features for SAT,
MIP, and TSP, respectively.

3. To assess the impact of these advances and to determine
the current state of the art, we performed what we be-
lieve is the most comprehensive evaluation of runtime
prediction methods to date. Specifically, we evaluated all
methods of which we are aware on performance data for
11 algorithms and 35 instance distributions spanning SAT,
TSP and MIP and considering three different problems:
predicting runtime on novel instances, novel parameter
configurations, and both novel instances and configura-
tions.

4. Techniques from the statistical literature on survival
analysis offer ways to better handle data from runs that
were terminated prematurely. While these techniques
were not used in most previous work—leading us to omit
them from our broad empirical evaluation—we show how
to leverage them to achieve further improvements to our
best-performing model, random forests.

In this extended abstract of our Al Journal article, we pro-
vide a high-level description of the modeling techniques (Sec-
tion 3) and instance features (Section 4) and give some exem-
plary empirical results (Section 5).

2 Problem Definition

We describe a problem instance by a list of m features
z = [z1,...,2m]", drawn from a given feature space F.
These features must be computable by a piece of problem-
specific code (usually provided by a domain expert) that effi-
ciently extracts characteristics for any given problem instance
(typically, in low-order polynomial time w.r.t. the size of the
given problem instance). We define the configuration space

of a parameterized algorithm with k parameters 61, ..., 0
with respective domains O71, . . ., © as a subset of the cross-
product of parameter domains: ® C O X --- x Of. The

elements of ® are complete instantiations of the algorithm’s
k parameters, and we refer to them as configurations. We
note that parameters can be numerical (continuous- or real-
valued) or categorical (with finite unordered domain, as, e.g.,
for parameters that govern which of several heuristics to use).

Given an algorithm A with configuration space ® and a
distribution of instances with feature space F, an EPM is a
stochastic process that defines a probability distribution over
performance measures for each combination of a parameter

configuration @ € © of A and a problem instance with fea-
tures z € F. The prediction of an entire distribution allows us
to assess the model’s confidence at a particular input. While
this is essential in some applications (e.g., in model-based al-
gorithm configuration), many previous models do not quantify
uncertainty. We thus chiefly evaluate our models in terms of
their mean predictions.

3 Modeling Techniques

We evaluated the following algorithm runtime prediction meth-
ods from previous work:

o RR: ridge regression with quadratic basis function ex-
pansion and forward selection as in early versions of
SATzilla [Leyton-Brown et al., 2009; Xu et al.,
20081);

e SP: SPORE-FoBa, a variant of RR that performs forward-
backward feature selection [Huang et al., 20101,

e NN: neural networks (as used by Smith-Miles and van
Hemert [2011]); and

o RT: regression trees (as used by Bartz-Beielstein and
Markon [2004]).

Out of these models, only regression trees natively handle
categorical inputs. In order to apply the other model types to
construct EPMs for algorithms with categorical parameters,
we used a 1-in-K encoding (also known as 1-hot encoding).
We also used two methods newly in the context of runtime
prediction:

e GP: approximate Gaussian processes [Rasmussen and
Williams, 20061, equipped with a new kernel for categor-
ical parameters; and

e RF: random forests [Breiman, 2001], adapted with a new
method to quantify predictive uncertainties and a new
method for choosing split points to yield linear interpola-
tions (and uncertainty estimates that grow with distance
to observed data points) in the limit of an infinite number
of trees.

4 Features

Instance features are inexpensively computable, problem-
dependent characteristics that distinguish instances from one
another. In our AI Journal paper we describe a large set of
138, 121, and 64 features for SAT, MIP, and TSP, respectively.
In particular, we review many existing features and also intro-
duce various new features, including the following two general
classes:

e Probing features: we execute a cheap algorithm for
the actual problem instance and keep track of several
statistics; e.g., counting the number of clauses a DPLL
SAT solver learns in 2 seconds;

o Timing features: we measure the time the computation
of various features take; this timing information can be a
very useful feature in itself.
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Figure 1: Visual comparison of models for runtime predictions on previously unseen test instances. The data sets used in each
column are shown at the top. The z-axis of each scatter plot denotes true runtime and the y-axis 2-fold cross-validated runtime as
predicted by the respective model; each dot represents one instance. Predictions above 3 000 or below 0.001 seconds are denoted

by a blue cross rather than a black dot.

RMSE
Domain RR SP NN PP RT RF
Minisat 2.0-COMPETITION 1.01 125 0.62 092 0.68 047
CryptoMinisat-INDU 0.94 099 094 09 091 0.72
£nm-RANDSAT 1.01 1.05 094 093 122 088
CPLEX-BIGMIX 2.7-10% 093 1.02 1 0.85 0.64
CPLEX-CORLAT 0.49 052 053 046 062 047
Concorde-RUE 0.41 043 043 042 059 045

Table 1: Quantitative comparison of models for runtime pre-
dictions on previously unseen instances (for 6 representative
benchmark sets out of 35 in the full article). We report 10-fold
cross-validation performance. Lower RMSE values are better
(0 is optimal). Boldface indicates performance not statistically
significantly different from the best method in each row based
on a Wilcoxon signed rank test.

S Empirical Results

We now summarize some results that are representative of our
findings about runtime prediction on (a) new instances and (b)
new instances and configurations.

5.1 Predictions for New Instances

Table 1 provides quantitative results for all benchmarks, and
Figure 1 visualizes some results in more detail. At the broadest
level, we can conclude that most of the methods were able to
capture enough information about algorithm performance on
training data to make meaningful predictions on test data, most
of the time: easy instances tended to be predicted as being easy,
and hard ones as being hard. Take, for example the case of
predicting the runtime of Minisat 2.0 on a heterogeneous
mix of SAT competition instances (see the leftmost column
in Figure 1 and the top row of Table 1). Minisat 2.0
runtimes varied by almost six orders of magnitude, while
predictions made by the better models were rarely off by more
than one order of magnitude (outliers may draw the eye in the

scatterplot, but quantitatively, the RMSE for predicting log;,
runtime was low—e.g., 0.47 for random forests, which means
an average misprediction of a factor of 10%4” < 3). While the
models were certainly not perfect, note that even the relatively
poor predictions of ridge regression tended to be accurate
within about an order of magnitude, which was sufficient to
enable the portfolio-based algorithm selector SATzi11a [Xu
et al., 2008] to win five medals in each of the 2007 and 2009
SAT competitions.

In our experiments, random forests were the overall winner
among the different methods, yielding the best predictions in
terms of all our quantitative measures.We attribute their strong
performance on highly heterogeneous data sets to the fact that,
as a tree-based approach, they can model very different parts
of the data separately; in contrast, the other methods allow the
fit in a given part of the space to be influenced more by data in
distant parts of the space. Indeed, the ridge regression variants
made extremely bad predictions for some outlying points on
CPLEX-BIGMIX. For the more homogeneous MIP data sets,
either random forests or projected processes performed best,
often followed closely by ridge regression. In terms of com-
putational requirements, random forests were also among the
cheapest methods, taking between 0.1 and 11 seconds to learn
a model.

5.2 Predictions for New Instances and New
Configurations

We now examine the most interesting case, where test in-
stances and algorithm parameter configurations were both pre-
viously unseen. Table 2 provides quantitative results of model
performance based on n = 10000 training data points, and
Figure 2 visualizes performance. Overall, we note that the best
models generalized to new configurations and to new instances
almost as well as to either alone. On the most heterogeneous
data set, CPLEX-BIGMIX, we once again witnessed extremely
poorly predicted outliers for the ridge regression variants, but
in all other cases, the models captured the large spread in
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Figure 2: Visual comparison of models for runtime predictions on pairs of previously unseen test configurations and instances.
In each scatter plot, the z-axis shows true runtime and the y-axis cross-validated runtime as predicted by the respective model.
Each dot represents one combination of an unseen instance and parameter configuration. Predictions above 3 000 or below 0.001

seconds are denoted by a blue cross rather than a black dot.

RMSE

Domain RR SP NN PP RT RF
CPLEX-BIGMIX > 10100 45 068 078 074 055
CPLEX-CORLAT 0.53 057 056 053 067 049
CPLEX-REG 0.17 0.19 0.19 0.19 0.24 0.17
CPLEX-RCW 0.1 012 012 012 012  0.09
CPLEX-CR 0.41 043 042 042 052 038
CPLEX-CRR 0.35 037 037 039 043 032
SPEAR-IBM 0.58 11 054 052 057 044
SPEAR-SWV 0.58 061 063 054 055 044
SPEAR-SWV-IBM 0.65 069 065 065 059 045

Table 2: Root mean squared error (RMSE) obtained by various
models for runtime predictions on unseen instances and con-
figurations. Boldface indicates the best average performance
in each row. Models were based on 10000 data points.
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Figure 3: True and predicted runtime matrices for dataset
SPEAR-SWV-IBUM, for previously unseen test instances and
test configurations. For example, the left heatmap shows the
true runtimes for the cross product of 500 test configurations
of SPEAR and the 685 test instances of the SWvV—-IBM bench-
mark set. Darker greyscale values represent faster runs, i.e.,
instances on the right side of each heatmap are hard (they take
longer to solve), and configurations at the top of each heapmap
are good (they solve instances faster).

runtimes (above 5 orders of magnitude) quite well. As in the
experiments in Section 5.1, the tree-based approaches, which
model different regions of the input space independently, per-

formed best on the most heterogeneous data sets. Figure 2
also shows some qualitative differences in predictions: for
example, ridge regression, neural networks, and projected pro-
cesses sometimes overpredicted the runtime of the shortest
runs, while the tree-based methods did not have this problem.
Random forests performed best in all cases.

Finally, Figure 3 qualitatively compares true runtimes to
those predicted by random forests and ridge regression using
the heterogeneous data set SPEAR-SWV—IBM. We note that
the true heatmaps are very similar to those predicted by ran-
dom forests, while the non-tree-based methods (here: ridge
regression) only captured instance hardness, failing to distin-
guish good from bad configurations (even in the simplest case
of predictions for training instances and training configura-
tions).

6 Conclusion

In this invited extended abstract of our Al Journal paper [Hut-
ter et al., 2014b], we summarized existing and new tech-
niques for predicting algorithm runtime and evaluated their
performance in a comprehensive empirical analysis. Partic-
ularly noteworthy is the rather good predictability of run-
time for new problem instances and new configurations of
parameterized algorithms. We encourage the interested reader
to consult our full journal article for a complete account
of our methods and findings. Overall, in this article, we
show that the performance prediction methods we studied
are fast, general, and achieve good, robust performance. We
hope they will be useful to a wide variety of researchers
who seek to model algorithm performance for algorithm
analysis, scheduling, algorithm portfolio construction, auto-
mated algorithm configuration, and other applications. The
Matlab source code for our models, the data and source
code to reproduce our experiments, and an online appendix
containing additional experimental results, are available at
http://www.cs.ubc.ca/labs/beta/Projects/EPMs.
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