
Using Meta-Learning to
Initialize Bayesian Optimization of Hyperparameters

Matthias Feurer and Jost Tobias Springenberg and Frank Hutter1

Abstract. Model selection and hyperparameter optimization is cru-
cial in applying machine learning to a novel dataset. Recently, a sub-
community of machine learning has focused on solving this prob-
lem with Sequential Model-based Bayesian Optimization (SMBO),
demonstrating substantial successes in many applications. However,
for expensive algorithms the computational overhead of hyperpa-
rameter optimization can still be prohibitive. In this paper we ex-
plore the possibility of speeding up SMBO by transferring knowl-
edge from previous optimization runs on similar datasets; specifi-
cally, we propose to initialize SMBO with a small number of config-
urations suggested by a metalearning procedure. The resulting simple
MI-SMBO technique can be trivially applied to any SMBO method,
allowing us to perform experiments on two quite different SMBO
methods with complementary strengths applied to optimize two ma-
chine learning frameworks on 57 classification datasets. We find that
our initialization procedure mildly improves the state of the art in
low-dimensional hyperparameter optimization and substantially im-
proves the state of the art in the more complex problem of combined
model selection and hyperparameter optimization.

1 Introduction
Hyperparameter optimization is a crucial step in the process of ap-
plying machine learning algorithms in practice. Depending on the
training time of the algorithm at hand, finding good hyperparameter
settings manually is often a time-consuming, tedious process requir-
ing many ad-hoc choices by the practitioner. As a result, much recent
work in machine learning has focused on the development of better
hyperparameter optimization methods [14, 3, 29, 4, 26, 21, 10, 33, 5].

Recently, Sequential Model-based Bayesian Optimization
(SMBO) [16, 7, 14] has emerged as a successful hyperparameter
optimization method in machine learning. It has been conclusively
shown to yield better performance than both grid and random
search [3, 29, 33, 9]. In practical applications, it has unveiled
new state-of-the-art performance on the challenging CIFAR-10
object recognition benchmark by tuning the hyperparameters of a
deep neural network [29] and was repeatedly found to match or
outperform human practitioneers in tuning complex neural network
models [3] as well as computer vision architectures with up to
238 hyperparameters [5]. It has also enabled AutoWEKA [33],
which performs combined algorithm selection and hyperparameter
optimization in the space of algorithms defined by the WEKA
package [11]. We describe SMBO in detail in Section 2.

However, SMBO is defined as a generic function optimization
framework, and—like any other generic optimization method—it re-
quires a substantial number of function evaluations to detect high-

1 University of Freiburg, Germany, {feurerm,springj,fh}@cs.uni-freiburg.de

performance regions when started on a new optimization problem.
The resulting overhead is computationally infeasible for expensive-
to-evaluate machine learning algorithms. To combat this problem,
metalearning has been applied in two ways. Firstly, a method sim-
ilar to SMBO that reasons across datasets has been developed[19].
Secondly, metalearning was used to initialize hyperparameter op-
timization methods with hyperparameter configurations that previ-
ously yielded good performance on similar datasets [26, 21, 10]. We
follow this latter approach to yield a simple and effective initializa-
tion procedure that applies generically to all variants of SMBO; we
refer to the resulting SMBO approach with Meta-learning-based Ini-
tialization as MI-SMBO. In contrast to another recent line of work
on collaborative SMBO methods [1, 35, 32], MI-SMBO does not re-
quire any adaptation of the underlying SMBO procedure. It is hence
easy to implement and can be readily applied to several off-the-shelf
hyperparameter optimizers.

Using a comprehensive suite of 57 datasets and 46 metafeatures,
we empirically studied the impact of our meta-learning-based ini-
tialization procedure to two SMBO variants with complementary
strengths. First, we applied it to optimize the 2 hyperparameters C
and γ of a support vector machine (SVM), which control the SVM’s
learning process. Here, our MI-Spearmint variant of the Gaussian-
process-based SMBO method Spearmint [29] (a state-of-the-art ap-
proach for low-dimensional hyperparameter optimization) yielded
mild improvements: in particular, MI-Spearmint performed better
than Spearmint initially, but after 50 function evaluations the dif-
ferences levelled off. Second, we applied our method to optimize
10 hyperparameters describing a choice between three classifiers
from the prominent Scikit-Learn package [22] and their hyperpa-
rameters. Here, our MI-SMAC variant of the random-forest-based
SMBO method SMAC [14] (a state-of-the-art approach for high-
dimensional hyperparameter optimization) yielded substantial im-
provements, significantly outperforming the previous state of the art
for this problem. To enable other researchers to reproduce and build
upon our results, we will provide our software on the first author’s
github page.2

2 Foundations
Before we describe our MI-SMBO approach in detail we formally
describe hyperparameter optimization and SMBO.

2.1 Hyperparameter Optimization
Let θ1, . . . , θn denote the hyperparameters of a machine learning al-
gorithm, and let Θ1, . . . ,Θn denote their respective domains. The al-

2 https://github.com/mfeurer

Algorithm 1: Generic Sequential Model-based Optimization.
SMBO(fD , T , Θ, θ1:t)

Input: Target function fD; limit T ; hyperparameter space Θ;
initial design θ1:t = 〈θ1, . . . ,θt〉

Result: Best hyperparameter configuration θ∗ found
1 for i← 1 to t do yi ← Evaluate fD(θi)
2 for j ← t+ 1 to T do
3 M← fit model on performance data 〈θi, yi〉j−1

i=1

4 Select θj ∈ arg maxθ∈Θ a(θ,M)

5 yj ← Evaluate fD(θj)

6 return θ∗ ∈ arg minθj∈{θ1,...,θT } yj

gorithm’s hyperparameter space is then defined as Θ = Θ1 × · · · ×
Θn. When trained with θ ∈ Θ on data Dtrain, we denote the algo-
rithm’s validation error on dataDvalid as V(θ,Dtrain,Dvalid). Using k-
fold cross-validation, the hyperparameter optimization problem for a
given dataset D then is to minimize:

fD(θ) =
1

k

k∑
i=1

V(θ,D(i)
train,D

(i)
valid). (1)

Hyperparameters θi can be numerical (real or integer, as, e.g., the
strength of a regularizer) or categorical (unordered, with finite do-
main, as, e.g., the choice between different kernels). Furthermore,
there can be conditional hyperparameters, which are only active if
another hyperparameter takes a certain value; for example, the hy-
perparameter “number of principal components” only needs to be
instantiated when the hyperparameter “preprocessing method” is set
to PCA.

The space of hyperparameter configurations can be searched ei-
ther manually or automatically. Since manual search is tedious, time-
consuming, and often not sample-efficient, much recent work in ma-
chine learning has focused on the development of automated meth-
ods. Grid search, the most frequently used automated method, does
not scale to high-dimensional hyperparameter spaces, and has been
shown to be outperformed by random search in the presence of low
effective dimensionality [3]. Various types of direct search have been
applied to the problem as well, such as genetic algorithms [26], par-
ticle swarm optimization [21], and tabu search [10]. Most recently,
several SMBO algorithms have been presented for hyperparameter
optimization [14, 3, 29]; we discuss these in the following section.

2.2 Sequential Model-based Bayesian Optimization
Sequential Model-based Bayesian Optimization (SMBO) [16, 7, 14]
is a powerful method for the global optimization of expensive black-
box functions f . As described in Algorithm 1, SMBO starts by
querying the function f at the t values in an initial design and record-
ing the resulting 〈input, output〉 pairs 〈θi, f(θi)〉ti=1. Afterwards, it
iterates the following three phases: (1) fit a probabilistic model M
to the 〈input, output〉 pairs collected so far; (2) use the probabilistic
modelM to select a promising input θ to evaluate next by quantify-
ing the desirability of obtaining the function value at arbitrary inputs
θ ∈ Θ through a so-called acquisition function a(θ,M); (3) evalu-
ate the function at the new input θ.

The SMBO framework offers several degrees of freedom to be in-
stantiated, including the procedure’s initialization, the type of prob-
abilistic model to use, and the acquisition function. We discuss three
prominent hyperparameter optimization methods in terms of these
components: SMAC [14], Spearmint [29], and TPE [3].

The role of the acquisition function a(θ,M) is to trade off explo-
ration in hyperparameter regions where the model M is uncertain
with exploitation in regions with low predicted validation error. The
most commonly-used acquisition function is the Expected positive
improvement (EI) over the best input found so far [16]:

aEI(θ,M) =

∫ ∞
−∞

max(y∗ − y, 0)pM(y|θ)dy. (2)

Other prominent acquisition functions are Upper Confidence Bounds
[31] and Entropy Search [12]. All of SMAC, Spearmint, and TPE use
the expected improvement criterion.

Several different model types can be used inside of SMBO. The
most popular choice, used for example by Spearmint, are Gaus-
sian processes [24] because they provide good predictions in low-
dimensional numerical input spaces and allow the computation of the
posterior Gaussian process model in closed form. The other popular
model type are tree-based approaches, which are particularly well
suited to handle high-dimensional input spaces and partially cate-
gorical input spaces. In particular, SMAC uses random forests [6],
modified to yield an uncertainty estimate [15]. Random forests are
particularly well suited for SMBO in high dimensions due to their
robustness and automated feature selection. Another tree-based ap-
proach, applied by TPE, is to use the Tree Parzen Estimator [3] in
order to construct a density estimate over good and bad instantia-
tions of each hyperparameter: instead of predicting p(y | θ) directly,
TPE constructs estimates of p(θ | y ≥ q) and p(θ | y < q) for
a given quantile q. Expected improvement can then be shown to be
proportional to p(θ|y>q)

p(θ|y<q) .
The final degree of freedom in SMBO is its initialization. To date,

this component has not received much attention, and is instantiated in
a fairly ad-hoc manner: Spearmint evaluates f at two pre-defined in-
put points, SMAC evaluates it at a pre-defined ‘default’ input, and
TPE evaluates 20 points selected at random according to a user-
defined prior distribution. It is this initialization procedure that our
MI-SMBO approach aims to improve.

An empirical evaluation of Bayesian hyperparameter optimization
methods in the framework of the hyperparameter optimization library
(HPOlib [9]) has shown Spearmint to yield the best results for low-
dimensional continuous hyperparameter optimization problems, and
SMAC to perform best for high-dimensional hyperparameter opti-
mization problems and problems with categorical and/or conditional
hyperparameters.

3 Initializing SMBO With Configurations
Suggested by Meta-Learning

Building on the foundations from Section 2 we will now describe
our proposed MI-SMBO method that uses meta-learning to initialize
SMBO.

The core idea behind MI-SMBO is to follow the common practice
machine learning experts employ when applying a known machine
learning method to a new dataset Dnew: they first study Dnew, relat-
ing it to datasets they previously experienced. When manually opti-
mizing hyperparameters for Dnew, they would begin the search with
hyperparameter configurations that were optimal for the most similar
previous datasets. Our MI-SMBO method automates this approach
and uses it to initialize an SMBO method. In addition to eliminat-
ing the need for manual exploration, this can lead to better results
as more time can be spend on improving known configurations. We
note that in settings where only a few performance evaluations of the
algorithm to be optimized are feasible using additional information

Algorithm 2: SMBO with Meta-Learning Initialization.
MI-SMBO(Dnew, fDnew , D1:N , θ̂1:N , d, t, T , Θ)

Input: new dataset Dnew; target function fDnew ; training datasets
D1:N = (D1, . . . , DN); best configurations for training
datasets, θ̂1:N = θ̂1, . . . , θ̂N ; distance metric d; number
of configurations to include in initial design, t; limit T ;
hyperparameter space Θ

Result: Best hyperparameter configuration θ∗ found
1 Sort dataset indices π(1), . . . π(N) by increasing distance to
Dnew, i.e.: (π(i) ≤ π(j))⇔ (d(Dnew, Di) ≤ d(Dnew, Dj))

2 for i← 1 to t do θi ← θ̂π(i)

3 θ∗ ← SMBO(fD , T , Θ, θ1:t)
4 return θ∗

from other datasets might be the only possibility to achieve reason-
able performance.

Formally, MI-SMBO can be stated as follows. Let θ̂1, . . . , θ̂N

denote the best known hyperparameters for the previously encoun-
tered datasets D1, . . . , DN , respectively. These may originate from
an arbitrary source, e.g., a manual search or the application of
an SMBO method during an offline training phase. Further, let
Dnew denote a new dataset, let d denote a distance metric between
datasets, and let π denote a permutation of (1, . . . , N) sorted by
increasing distance between Dnew and Di (i.e., (π(i) ≤ π(j)) ⇔
(d(Dnew, Di) ≤ d(Dnew, Dj))). Then, MI-SMBO with an initial
design of t configurations initializes SMBO with configurations
θ̂π(1), . . . , θ̂π(t). Algorithm 2 provides pseudocode for the ap-
proach.

We would like to highlight the fact that MI-SMBO is agnostic
of the SMBO algorithm used, as long as the algorithm’s imple-
mentation accepts an initial design as input or can be warmstarted
with a given list of performance data 〈θi, yi〉ti=1. All of SMAC,
TPE, and Spearmint fulfill these criteria. We would also like to
highlight that SMBO is a particularly good match for initialization
with meta-learning: in contrast to existing approaches that initial-
ize other types of hyperparameter optimization algorithms via met-
alearning [10, 21, 26], SMBO can make effective use of all perfor-
mance data it receives as input (and does not have to adapt population
sizes or alike to the size of the initial design).

To implement MI-SMBO, we still need to define a distance metric
between datasets. This is a well studied problem which was, to our
knowledge, first discussed by Soares and Brazdil [30]. For the pur-
pose of this work we assume that each dataset Di can be described
through a set of F metafeatures mi = (mi

1, . . . ,m
i
F). We discuss

the metafeatures we used in Section 3.1. In practice, we precompute
the metafeatures for all training datasets D1, . . . , DN along with the
best configurations (θ̂1, . . . , θ̂N). We then measure the distance be-
tween a new dataset Dnew and a previous dataset Di as the norm of
the distance between their metafeatures:

d(Dnew, Dj) = ‖mnew −mj‖. (3)

3.1 Implemented Metafeatures

To evaluate our approach in a realistic setting we implemented the
46 metafeatures from the literature listed in Table 1. Based on their
types and underlying assumptions, these metafeatures can be divided
into at least five groups:

Table 1. List of implemented metafeatures

Simple metafeatures: Statistical metafeatures:
number of patterns min # categorical values
log number of patterns max # categorical values
number of classes mean # categorical values
number of features std # categorical values
log number of features total # categorical values
number of patterns with missing values kurtosis min
percentage of patterns with missing values kurtosis max
number of features with missing values kurtosis mean
percentage of features with missing values kurtosis std
number of missing values skewness min
percentage of missing values skewness max
number of numeric features skewness mean
number of categorical features skewness std
ratio numerical to categorical
ratio categorical to numerical PCA metafeatures:
dataset dimensionality pca 95%
log dataset dimensionality pca skewness first pc
inverse dataset dimensionality pca kurtosis first pc
log inverse dataset dimensionality
class probability min Landmarking metafeatures:
class probability max One Nearest Neighbor
class probability mean Linear Discriminant Analysis
class probability std Naive Bayes

Decision Tree
Information-theoretic Decision Node Learner
metafeature: Random Node Learner
class entropy

• Simple metafeatures, such as the number of features, patterns or
classes, describe the basic dataset structure [20, 17, 1, 35].

• PCA metafeatures [1] perform principal component analysis and
compute various statistics of the principal components.

• The information-theoretic metafeature measures the class entropy
in the data [20].

• Statistical metafeatures [20] attempt to characterize the data dis-
tribution via descriptive statistics such as the kurtosis or the dis-
persion of the label distribution.

• Landmarking metafeatures [23, 2] are computed by running fast
machine learning algorithms to characterize properties of the
dataset. Since they characterize which simple approaches work
well (and, in combination, also which simple approaches work
better than others) they are intuitively very relevant for deter-
mining which hyperparameter configuration of a given algorithm
would perform well.

While most of the metafeatures can be computed for a whole
dataset, some of them (e.g., skewness) are defined for each attribute
of a dataset. In this case, we compute the metafeature for each at-
tribute of the dataset and use the mean, standard deviation, minimum
and maximum of the resulting vector as proposed in [27]. Impor-
tantly, as our datasets are relatively small, the metafeatures for one
dataset can be computed within less than one minute. Furthermore,
for every dataset we use, the time needed to compute the metafea-
tures is less than the average time it takes to evaluate a hyperparam-
eter configuration.

4 Experimental Methodology

We now discuss the datasets we used in our experiments, as well as
the machine learning algorithms and their hyperparameters we opti-
mized for them.

Table 2. List of the 57 datasets used for the experiments; the names refer
to the names on the OpenML project website[34].

abalone anneal.ORIG arrhythmia
audiology autos balance-scale
braziltourism breast-cancer breast-w
car cmc credit-a
credit-g cylinder-bands dermatology
diabetes ecoli eucalyptus
glass haberman heart-c
heart-h heart-statlog hepatitis
ionosphere iris kr-vs-kp
labor letter liver-disorders
lymph mfeat-factors mfeat-fourier
mfeat-karhunen mfeat-morphological mfeat-pixel
mfeat-zernike mushroom nursery
optdigits page-blocks pendigits
postoperative-patient-data primary-tumor satimage
segment sonar soybean
spambase tae tic-tac-toe
vehicle vote vowel
waveform-5000 yeast zoo

Table 3. Hyperparameters of the SVM. We optimized the base-2 logarithm
of C and γ.

Hyperparameter Values Steps

log2(C) {−5,−4, . . . , 15} 21
log2(γ) {−15,−14, . . . , 3} 19

4.1 Datasets and Preprocessing

For our experiments, we obtained the 57 datasets listed in Table 2
from the OpenML project website[34]. We first shuffled each dataset
and then split it in stratified fashion into 2/3 training and 1/3 test data.
Validation performance for Bayesian optimization was then com-
puted by ten-fold crossvalidation on the training dataset.

To use the same dataset for each classification algorithm, we coded
categorical features using a one-hot (aka 1-in-k) encoding, replacing
each categorical feature f with domain {v1, . . . , vk} by k binary
variables, only the i-th of which is set to true for data points where
f is set to vi. To retain sparsity, we replaced any missing values with
zero. Finally, we scaled numerical features linearly to the range [0, 1]
by subtracting the minimum value and dividing by the maximum. 3

4.2 Machine Learning Algorithms and Their
Hyperparameters

We empirically evaluated our MI-SMBO approach to optimize two
practically relevant machine learning frameworks, one with few and
one with many hyperparameters. The first framework are Support
Vector Machines (SVMs) [28], namely the SVM implementation in
Scikit-Learn (short sklearn) [22]. We used an RBF kernel and, in
accordance with the LibSVM user guide [8] optimized two hyper-
parameters: the complexity penalty C and the kernel width of the
RBF kernel γ. We chose the range of allowed values according to the
LibSVM user guide; see Table 3 for details.

Our second machine learning framework comprises a range of
machine learning algorithms in sklearn [22]. We combined all al-
gorithms into a single hierarchical optimization problem using the

3 This is the standard practice for SVMs, as for example advised in the
LibSVM user guide: http://www.csie.ntu.edu.tw/˜cjlin/
papers/guide/guide.pdf.

Table 4. Hyperparameters for the CASH problem in sklearn. All
hyperparameters except θclassifier and preprocessing are conditional.

Hyperparameters not mentioned were set to their default value.

Component Hyperparameter Values # Values

Main θclassifier {RF, SVM, LinearSVM} 3
Main preprocessing {PCA, None} 2
SVM log2(C) {−5,−4, . . . , 15} 21
SVM log2(γ) {−15,−14, . . . , 3} 19
LinearSVM log2(C) {−15,−14, . . . , 15} 21
LinearSVM penalty {L1, L2} 2
RF min splits {1, 2, 4, 7, 10} 5
RF max features {1%, 4%, . . . , 100%} 10
RF criterion {Gini, Entropy} 2
PCA variance to keep {80%, 90%} 2

Combined Algorithm Selection and Hyperparameter optimization
(CASH) setting by Thornton et al. [33]: there was one top-level hy-
perparameter θclassifier choosing between several classification algo-
rithms and all hyperparameters of classification algorithm Ai were
conditional on θclassifier being set to Ai. This CASH problem is of
high practical relevance since it describes precisely the problem an
end user faces when given a new dataset.4 To keep the computation
bearable and the results interpretable, we only included three clas-
sification algorithms: an SVM with an RBF kernel (as in our first
experiment), a linear SVM, and random forests [6] (one of the most
robust classifiers available). Since we expected noise and redundan-
cies in the training data, we also allowed the optimization procedure
to use Principal Component Analysis (PCA) for preprocessing, with
the number of PCA components being conditional on PCA being ap-
plied. In total this lead to 10 hyperparameters, as detailed in Table
4.

4.3 Experimental Setup

For both machine learning frameworks, we precomputed the 10-fold
crossvalidation error on all 57 datasets over a grid with all possi-
ble hyperparameter combinations. For the SVM, this grid contained
all 399 combinations of the 19 values for C and 21 values for γ
listed in Table 3. For sklearn, it contained an additional 1 224 pos-
sible hyperparameter configurations, due to the additional flexibility
of preprocessing and the two other model classes (linear SVMs and
random forests, see Table 4). Therefore, in total, we evaluated 1 623
hyperparameter configurations on each dataset. Although the classi-
fication datasets were no larger than medium-sized (< 30 000 data
points), calculating the grid took up to three days per dataset on a
modern CPU. This extensive precomputation allowed us to run all
our experiments in simulation, by using a lookup table in lieu of
running an actual algorithm. We will make the gathered algorithm
performance data publicly available to facilitate both reproducibility
of our experiments and follow-up work using the same data.

We evaluated our MI-SMBO approach in a leave-one-dataset-out
fashion: to evaluate it on a dataset Dnew, we assumed knowledge of
the other 56 datasets and their best hyperparameter settings. Because
Bayesian optimization contains random factors, we repeated each op-
timization run ten times on each dataset. In total, we thus executed
each optimization procedure 570 times.

Our metalearning initialization approach has several free design
choices we had to instantiate for our experiments. Firstly, we had to

4 We note that several others have also studied variants of the CASH problem
in sklearn [13, 18].

0 10 20 30 40 50

Function evaluations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC
random
TPE
Spearmint(Grid)

0 10 20 30 40 50

Function evaluations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC
random
TPE
Spearmint(Grid)

0 10 20 30 40 50

Function evaluations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC
random
TPE
Spearmint(Grid)

0 10 20 30 40 50

Function evaluations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

Spearmint(Grid)
MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

0 10 20 30 40 50

Function evaluations

0.00

0.02

0.04

0.06

0.08

0.10

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

Spearmint(Grid)
MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

0 10 20 30 40 50

Function evaluations

0.01

0.02

0.03

0.04

0.05

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

Spearmint(Grid)
MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

dataset: heart-c dataset: arrhythmia dataset: breast-cancer

Figure 1. Difference in SVM validation error between the best found hyperparameters at evaluation t and the best value obtained via a full grid search on
three datasets. MI-Spearmint(10, L1, X) stands for MI-Spearmint with an initial design of t = 10 configurations suggested by metalearning using

metafeatures X . Note the differently scaled y-axes in the top and bottom plots.

choose a norm for the distance metric in the space of meta-features
in Equation 3; we experimented with both the L1 and L2 norms.
Next to using the full set of metafeatures, we experimented with var-
ious subsets. Since previous empirical results suggested that land-
marking metafeatures are superior to other metafeatures [23, 25, 26],
we experimented with using only the landmarking features used in
the first experiment of Pfahringer et al. [23]. We also experimented
with the subsets of metafeatures used in previous works on collab-
orative SMBO [1, 35]. Lastly, we had to decide how many hyper-
parameter configurations to evaluate as part of the warmstart phase
before switching to the SMBO algorithm. Here we tried the values
t ∈ {5, 10, 20, 25}. In total, we evaluated 40 different instantiations
of our metalearning procedure.

Due to space restrictions, we only report results for a subset of
these instantiations. Concerning distance measures, in preliminary
experiments the results with the L1 and L2 norms were qualita-
tively similar, with slightly better results for the L1 norm. Thus, all
distances in the experiments reported here were calculated with the
L1-norm. Preliminary results with different subsets of metafeatures
showed that the metafeatures used by existing collaborative SMBO
methods did not match the performance of the other sets; we there-
fore restricted ourselves to only show results for all metafeatures
and for only the landmarking metafeatures. Finally, we report per-
formance only for MI-SMBO with t = 10 hyperparameter configu-
rations suggested by metalearning; however, preliminary results sug-
gest that for larger configuration spaces larger values of t improve
results.

5 Experimental Results
We now report our results for optimizing SVMs and sklearn. For
each of the two machine learning frameworks we studied, we first
assessed the state of the art and then improved it with MI-SMBO.
Specifically, we evaluated the base performance of the hyperparam-
eter optimization procedures random search, Spearmint, TPE, and
SMAC (described in Section 2; note that for TPE the prior distribu-
tions were uniform) on our 57 datasets and then added warmstarts

via MI-SMBO to the best of these.

5.1 Warmstarting Spearmint for Optimizing SVMs
For the low-dimensional problem of optimizing SVMs, the
Spearmint optimizer tended to perform best. Figure 1 (top) com-
pares its qualitative performance on three representative datasets to
that of TPE, SMAC, and random search, showing that it typically
performed best, but that there was still room for improvement. A sta-
tistical analysis using a two-sided t-test on the performances for each
of the 57 datasets shows that Spearmint indeed significantly outper-
formed TPE, SMAC, and random search in 35%, 44%, and 52% of
the datasets, respectively, and only lost in 4%, 4%, and 8% of the
cases, respectively. These findings are in line with previous results
showing Spearmint to be the best choice for hyperparameter opti-
mization benchmarks with a small number of continuous hyperpa-
rameters [9].

We thus applied our MI-SMBO approach to Spearmint, using ei-
ther all meta-features or just the landmarking features, to suggest
the first t = 10 hyperparameter settings Spearmint should evalu-
ate. Figure 1 (bottom) compares the resulting warm-start versions of
Spearmint against vanilla Spearmint on the same three representative
datasets as above. For the two datasets on the left, metalearning di-
rectly identified one of the optimal hyperparameter configurations in
the first function evaluation; this is in contrast to vanilla Spearmint,
which required 17 and 45 function evaluations, respectively, to even-
tually reach a configuration of equal performance. In contrast, for the
dataset on the right, metalearning only yielded small improvements
(a comparison to the right top plot in Figure 1 shows that neither vari-
ant of Spearmint performed better than random search in this case).

Next, we analyzed the performance of MI-Spearmint using the
same ranking-based evaluation as Bardenet et al. [1] to aggregate
over datasets. For each dataset and for each function evaluation bud-
get from 1 to 50, we computed the ranks of the four baselines (ran-
dom search, SMAC, TPE, and Spearmint) and the two MI-Spearmint
variants. More precisely, since we had available 10 runs of each of
the 6 methods for each dataset (which give rise to 106 possible com-

0 10 20 30 40 50
2.5

3.0

3.5

4.0

4.5

5.0

SMAC
random

TPE
Spearmint(Grid)

MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

Figure 2. Average rank of each optimizer, computed over all datasets, for
the SVM classification experiment. (WS10,l1,X) denotes MI-Spearmint
warm-started with 10 configurations suggested by metalearning using

metafeatures X.

binations), we drew a bootstrap sample of 1 000 joint runs of the six
optimizers and computed the average ranks across these runs. We
then further averaged these average ranks across the 57 datasets and
show the results in Figure 2. We remind the reader that the rank is
a measure of performance relative to the performance of the other
optimizers; thus, a method’s rank can increase over time (with larger
function evaluation budgets) even though its error decreases if the
other methods achieve greater error reductions. Furthermore, we note
that this plot simply ranks raw function values and does not include
information about how much the errors of the various methods dif-
fer. With this disclaimer noted, the results are as expected: random
search performed worst, followed by SMAC and TPE, which are
known to be outperformed by Spearmint for low-dimensional con-
tinuous problems [9]. The three variants of Spearmint performed
best, converging to a similar rank with larger function evaluation
budgets; meta-learning yielded dramatically better results for very
small function evaluation budgets, and after about 10 function eval-
uations Spearmint (almost) caught up. We note, however, that even
after 50 function evaluations Spearmint still had not fully caught up
to its warmstart variants, indicating that an initialization with 10 con-
figurations determined by meta learning provided not only good per-
formance with few function evaluations but also a good basis for
Spearmint to improve upon further.

To complement the above ranking analysis, Figure 3 quantifies on
how many datasets MI-Spearmint (based on the landmarking fea-
tures) performed better and worse than the other methods according
to a two-sided t-test (over the ten repetitions of runs per dataset).
The upper plot of Figure 3 shows the ratio of datasets for which
MI-Spearmint performed significantly better than the other methods,
and the lower plot shows the statistically significant losses. Both of
these quantities are plotted over time, as the function evaluation bud-
get increases. We observe that MI-Spearmint started off much better
than all other methods. Given larger function evaluation budgets, us-
ing its Spearmint part, it even increased the performance advantage
over random search, TPE, and SMAC. Compared to Spearmint, MI-
Spearmint started off significantly better in 70% of the datasets, but
these differences leveled off over time. There was very little differ-
ence between the two MI-Spearmint variants (based on landmarking
features vs. based on all features).

5.2 Warmstarting SMAC for Optimizing sklearn

We used the same approach as in the above experiment to assess
MI-SMBO’s performance on the combined algorithm selection and
hyperparapeter optimization problem in sklearn. First, we assessed
the state of the art for this problem. Due to the conditional hyperpa-
rameters in the sklearn space, we excluded Spearmint (which does
not natively support them and is known to perform poorly in their
presence [9]) and only evaluated SMAC, TPE, and random search.
Figure 4 (top) presents the qualitative performance of these optimiz-
ers on three representative datasets, showing that both SMAC and
TPE performed better than random search. Overall, in line with the
results of Eggensperger et al. [9] for large hyperparameter spaces, we
found SMAC and TPE to perform best. We applied our metalearning
initialization to SMAC, but would also expect TPE to benefit from it.

Figure 4 (bottom) shows the qualitative results of MI-SMAC com-
pared to vanilla SMAC. In the left plot, the metalearning suggestions
were reasonable and MI-SMAC’s second part could improve on these
over time. In the middle plot the second configuration suggested by
metalearning was already the best, leaving no room for improvement
by SMAC. The right plot highlights the fact that metalearning can
also fail and decrease the performance of SMAC.

Figure 5 shows the percentage of statistically significant wins of
MI-SMAC against the other optimizers. As before, we evaluated two
different versions of MI-SMAC, based on all features and based on
only the landmarking metafeatures from Pfahringer [23]; the fig-
ure shows that MI-SMAC based on the landmarking features alone
worked somewhat better than based on all features, winning statis-
tically significantly on 11% of the datasets (and loosing on 8%).
Compared to the optimizers without metalearning, MI-SMAC per-
formed much better from the start. Even after 50 iterations, it per-
formed significantly better than TPE on 14% of the datasets (in 8%
worse), better than SMAC on 25% of the datasets (in 10% worse),
and better than random search on 35% of the dataset (in 9% worse).
We would like to point out that the improvement MI-SMAC yielded
over SMAC is nearly as large as the improvement that SMAC yielded
over random search (in 29% better). This is in contrast to the (only)
slight improvements MI-Spearmint yielded over Spearmint for opti-
mizing SVMs. We attribute the success for sklearn to its much larger
search space, which not even SMAC can effectively search in as lit-
tle as 50 function evaluations. Drawing on successful optimizations
from previous datasets clearly helped SMAC in this complex search
space.

6 Conclusion

We have presented a simple, yet effective, method for improving
Sequential Model-based Bayesian Optimization (SMBO) of hyper-
parameters by transferring knowledge from previous optimization
runs. Our method combines ideas from both the metalearning and
the Bayesian optimization community by initializing SMBO with
configurations suggested by a metalearning procedure. We dub the
resulting metalearning-initialized SMBO variant MI-SMBO. Impor-
tantly, MI-SMBO is agnostic of the actual SMBO method used and
can thus be applied to the method best suited for a particular problem.

We demonstrated MI-SMBO’s efficacy by improving the initial-
ization of two quite different SMBO methods for optimizing two
machine learning frameworks on a total of 57 datasets. For opti-
mization in the low-dimensional hyperparameter space of a support
vector machine, our MI-Spearmint variant of the best-performing
SMBO method Spearmint mainly improved upon Spearmint in the

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

#Function evaluations

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

MI-Spearmint(10,L1,landmarking) vs SMAC
MI-Spearmint(10,L1,landmarking) vs random

MI-Spearmint(10,L1,landmarking) vs TPE
MI-Spearmint(10,L1,landmarking) vs Spearmint(Grid)

MI-Spearmint(10,L1,landmarking) vs MI-Spearmint(10,L1,all)

Figure 3. Percentage of wins of MI-Spearmint with an initial design of t = 10 configurations suggested by metalearning using the L1 distance on the
metafeature subset from Pfahringer [23]. The upper plot shows significant wins of MI-Spearmint against each other approach according to the two-sided t-test

while the lower plot shows the statistically significant losses.

0 10 20 30 40 50

Function evaluations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
random(10)
TPE(10)

0 10 20 30 40 50

Function evaluations

0.00

0.05

0.10

0.15

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
random(10)
TPE(10)

0 10 20 30 40 50

Function evaluations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
random(10)
TPE(10)

0 10 20 30 40 50

Function evaluations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
MI-SMAC(10,L1,all)(10)
MI-SMAC(10,L1,landmarking)(10)

0 10 20 30 40 50

Function evaluations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
MI-SMAC(10,L1,all)(10)
MI-SMAC(10,L1,landmarking)(10)

0 10 20 30 40 50

Function evaluations

0.02

0.03

0.04

0.05

0.06

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
MI-SMAC(10,L1,all)(10)
MI-SMAC(10,L1,landmarking)(10)

dataset: sonar dataset: heart-h dataset: hepatitis

Figure 4. Difference in validation error between sklearn instantiated with the best found hyperparameters and the best value obtained via a full grid search,
for three datasets. (WS10,l1,X) stands for MI-SMAC with an initial design of t = 10 configurations suggested by metalearning using metafeatures X. Note the

differently scaled y-axes in the top and bottom plots.

early stages of optimization, thus helping it find good configurations
quickly. For a large configuration space describing a combined algo-
rithm selection and hyperparameter optimization problem in scikit-
learn, our MI-SMAC variant of the best-performing SMBO variant
SMAC substantially improved over SMAC (and all other optimizers
we tested) across a range of function evaluation budgets, showing the
potential of our approach especially for large scale hyperparameter
optimization.

In future work, we plan to evaluate MI-SMAC for even larger con-
figuration spaces, such as those of Auto-WEKA [33] and Hyperopt-
Sklearn[18]. We also noticed the lack of a canonical implementa-

tion of metafeatures and are aiming to provide such an implemen-
tation. Finally, we plan to integrate metalearning into the SMBO
procedure and compare the result with recent work on collaborative
SMBO [1, 35, 32].

REFERENCES

[1] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, ‘Collaborative hyper-
parameter tuning’, in Proc. of ICML, (2013).

[2] H. Bensusan and C. Giraud-Carrier, ‘Discovering task neighbourhoods
through landmark learning performances’, in Proc. of 4th PKDD.
Springer, (September 2000).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50

Function evaluations

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

MI-SMAC(10,L1,landmarking) vs MI-SMAC(10,L1,all)
MI-SMAC(10,L1,landmarking) vs SMAC

MI-SMAC(10,L1,landmarking) vs TPE
MI-SMAC(10,L1,landmarking) vs random

Figure 5. Percentage of wins of MI-SMAC with an initial design of t = 10 configurations suggested by metalearning using the L1 distance on the
metafeature subset from Pfahringer [23]. The upper plot shows the number of significant wins of MI-SMAC over competing approaches according to the

two-sided t-test while the lower plot shows the statistically significant losses.

[3] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘Algorithms for hyper-
parameter optimization’, in Proc. of NIPS, (2011).

[4] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter opti-
mization’, JMLR, 13, (February 2012).

[5] J. Bergstra, D. Yamins, and D. D. Cox, ‘Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vi-
sion architectures’, in Proc. of ICML, (2013).

[6] L. Breiman, ‘Random forests’, Machine Learning, 45, (2001).
[7] E. Brochu, V. M. Cora, and N. de Freitas, ‘A tutorial on Bayesian

optimization of expensive cost functions, with application to ac-
tive user modeling and hierarchical reinforcement learning’, CoRR,
abs/1012.2599, (2010).

[8] Chih-Chung Chang and Chih-Jen Lin, ‘LIBSVM: A library for support
vector machines’, ACM Transactions on Intelligent Systems and Tech-
nology, 2, (2011).

[9] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. H.
Hoos, and K. Leyton-Brown, ‘Towards an empirical foundation for as-
sessing bayesian optimization of hyperparameters’, in NIPS workshop
on Bayesian Optimization, (2013).

[10] T.A.F. Gomes, R.B.C. Prudêncio, C. Soares, A. Rossi, and A. Carvalho,
‘Combining meta-learning and search techniques to select parameters
for support vector machines’, Neurocomputing, 75(1), (2012).

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten, ‘The WEKA data mining software: an update’, ACM SIGKDD
Explorations Newsletter, 11(1), 10–18, (2009).

[12] P. Hennig and C. Schuler, ‘Entropy search for information-efficient
global optimization’, JMLR, 13, (2012).

[13] M. W. Hoffman, B. Shahriari, and N. de Freitas, ‘Exploiting correlation
and budget constraints in Bayesian multi-armed bandit optimization’,
ArXiv e-prints, (March 2013).

[14] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, in Proc. of LION-5,
(2011).

[15] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, ‘Algorithm runtime
prediction: Methods and evaluation’, JAIR, 206(0), 79 – 111, (2014).

[16] D.R. Jones, M. Schonlau, and W. Welch, ‘Efficient global optimization
of expensive black box functions’, Journal of Global Optimization, 13,
(1998).

[17] A. Kalousis, Algorithm Selection via Meta-Learning. University of
Geneve, Department of Computer Science, Ph.D. dissertation, Univer-
sity of Geneve, 2002.

[18] B. Komer, J. Bergstra, and C. Eliasmith, ‘Hyperopt-sklearn: Automatic
hyperparameter configuration for scikit-learn’, in ICML workshop on
AutoML, (2014).

[19] Rui Leite, Pavel Brazdil, and Joaquin Vanschoren, ‘Selecting classifi-
cation algorithms with active testing on similar datasets’, in 5th PLAN-

LEARN WORKSHOP at ECAI, (2012).
[20] Machine Learning, Neural and Statistical Classification, eds., Donald

Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell, Ellis Hor-
wood, 1994.

[21] P.B.C. Miranda, R.B.C. Prudêncio, A. Carvalho, and C. Soares, ‘Com-
bining meta-learning with multi-objective particle swarm algorithms
for SVM parameter selection: An experimental analysis’, in Brazilian
Symposium on Neural Networks, (2012).

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ‘Scikit-learn: Machine learning in Python’, JMLR, 12, (2011).

[23] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, ‘Meta-learning by
landmarking various learning algorithms’, in Proc. of ICML, (2000).

[24] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning, The MIT Press, 2006.

[25] M. Reif, F. Shafait, and A. Dengel, ‘Prediction of classifier training time
including parameter optimization’, in KI 2011: Advances in Artificial
Intelligence, (2011).

[26] M. Reif, F. Shafait, and A. Dengel, ‘Meta-learning for evolutionary pa-
rameter optimization of classifiers’, Machine Learning, 87, (2012).

[27] M. Reif, F. Shafait, and A. Dengel. Meta2-features: Providing meta-
learners more information, 2012. Poster and Demo Track of the 35th
German Conference on AI.

[28] Bernhard Scholkopf and Alexander J. Smola, Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond,
MIT Press, Cambridge, MA, USA, 2001.

[29] J. Snoek, H. Larochelle, and R.P. Adams, ‘Practical bayesian optimiza-
tion of machine learning algorithms’, in Proc. of NIPS, (2012).

[30] C. Soares and P.B. Brazdil, ‘Zoomed ranking: Selection of classifica-
tion algorithms based on relevant performance information’, in Proc. of
PKDD’00, Springer, (2000).

[31] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, ‘Gaussian process
optimization in the bandit setting: No regret and experimental design’,
in Proc. of ICML, (2010).

[32] K. Swersky, J. Snoek, and R.P. Adams, ‘Multi-task bayesian optimiza-
tion’, in Proc. of NIPS, (2013).

[33] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Auto-
WEKA: combined selection and hyperparameter optimization of clas-
sification algorithms’, in Proc. of KDD’13, (2013).

[34] J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer,
P. Winter, B. Wiswedel, M. R. Berthold, and J. Vanschoren, ‘OpenML:
a collaborative science platform’, in Proc. of ECML/PKDD’13, (2013).

[35] D. Yogatama and G. Mann, ‘Efficient transfer learning method for au-
tomatic hyperparameter tuning’, in Proc. of AISTATS, (2014).

