
Extrapolating Learning Curves of Deep Neural Networks
Tobias Domhan, Jost Tobias Springenberg, Frank Hutter

Freiburg University

 {domhant,springj,fh}@informatik.uni-freiburg.de

 … in 30 sec
• Deep networks critically depend on hyperparameters, but

training is expensive

• To automate a heuristic that experts use, we built a
probabilistic model to forecast the asymptotic accuracy of a
given parameter setting and stop all but the most promising
runs

• Simulation resulted in a 2.7-fold reduction of overall runtime

Motivation
• It takes very few SGD iterations for a human expert to tell good from

bad parameter settings

• Yet in hyperparameter optimization every setting is run to the very end

• Automating the prediction of performance could save a lot of time
and speed up preliminary evaluations during development

Model Search
• Search over structure and hyperparameters of deep

networks:

• 81 parameters in total, namely 9 network parameters and
12 parameters for each of up to 6 layers

• Neural network software: Caffe [Jia 2013]

• Bayesian optimization methods:

• 5 runs of both SMAC and TPE

• Evaluated a total of 800 networks

• Dataset: k-means features extracted from CIFAR10
[Krizhevsky 2009; Coates 2011]

Learning curves
• Random subset of learning curves:

Extrapolation
Problem definition
• Given data points 𝑦1:𝑛 we would to like to forecast the future

performance 𝑦𝑙𝑎𝑠𝑡 probabilistically

Approach

• Selected 𝑘 = 𝟏𝟎 parametric model families
that roughly match learning curves’ shape (typically increasing,
saturating functions)

• Representative power increased by convex combination of individual
models:

• 𝑓 𝑥 = 𝑤𝑖𝑓𝑖(𝑥|𝜽𝑖)
𝑘
𝑖=1 + 𝜖 with 𝜖 ~ 𝑁 0, 𝜎2 and 𝑤𝑖 = 1

𝑘
𝑖=1

• Model uncertainty captured by MCMC

• The prior encoded monotonicity assumption of each of the models

• We obtained 𝑆 = 100000 samples from 100 parallel chains of length
1500 with a burn-in of 500

• Let 𝝃 be the model’s parameters 𝑤1, … , 𝑤𝑘 , 𝜽1, … , 𝜽𝑘 , 𝜎
2

• Probability of improving over current best parameter setting:

• 𝑃 𝑦𝑙𝑎𝑠𝑡 ≥ 𝑦𝑏𝑒𝑠𝑡 ∣ 𝑦1:𝑛 ≈
1

𝑆
 𝑃(𝑦𝑙𝑎𝑠𝑡 ≥ 𝑦𝑏𝑒𝑠𝑡 ∣ 𝝃

𝑠 , 𝑦1:𝑛)
𝑆
𝑠=1

Experiments
• Example extrapolation:

• Example of model being misled by unusual shape of the learning curve:

• Quality of predictions:

• RMSE of residual 𝐸 𝑦𝑚 − 𝑦𝑙𝑎𝑠𝑡 :

• 𝑦𝑙𝑎𝑠𝑡 in/over/under 90% interval:

• Model tends to be overconfident based on little data, but rarely
underpredict

• Simulated early stopping in optimization

• Replayed all 800 runs

• Stopped a run when probability of improving over current best got
too small: 𝑃 𝑦𝑙𝑎𝑠𝑡 ≥ 𝑦𝑏𝑒𝑠𝑡 ∣ 𝑦1:𝑛 < 1%

• Reached the same accuracy

• 2.7-fold speedup

SMAC (Sequential Model-based
algorithm configuration) is based on
random forests and can handle
continuous, discrete and conditional
hyperparameters.
[Hutter, Hoos, and Leyton-Brown,
2011]

TPE (Tree Parzen Estimator) is
based on Gaussian Mixture Models.
Supports conditional, continuous
and discrete parameters and also
priors over them.

[Bergstra, Bardenet, Bengio, and
Kégl, 2011]

% train 10% 30% 50% 70% 90%

RMSE 0.082 0.046 0.026 0.010 0.011

% train 10% 30% 50% 70% 90%

𝑦𝑙𝑎𝑠𝑡 in 42.54 % 48.51% 61.94 % 80.45 % 91.04 %

𝑦𝑙𝑎𝑠𝑡 over 12.69 % 9.70 % 8.96 % 6.77 % 6.72%

𝑦𝑙𝑎𝑠𝑡 under 44.77 % 41.79 % 29.10 % 12.78 % 2.24 %

pow3: 𝑐 − 𝑎 𝑥−𝛼 pow4: 𝑐 − 𝑎 𝑥 + 𝑏 −𝛼

ilog2: 𝑐 −
𝑎

log 𝑥

DR-hill:
𝑡 𝑥𝜂

𝜅𝜂+𝑥𝜂

Janoschek: 𝑎 − (𝑎 − 𝛽)𝑒−𝑘 𝑥
𝛿

 Exp4: 𝑐 − 𝑒−𝑎𝑥
𝛼+𝑏

vap: 𝑒(𝑎+
𝑏

𝑥
+𝑐 log 𝑥)

MMF: 𝛼 −
𝛼 − 𝛽

1.+ 𝜅 𝑥 𝛿

loglog linear: log(𝑎 log(𝑥) + 𝑏)

Weibull: 𝛼 − (𝛼 − 𝛽) 𝑒−(𝜅𝑥)
𝛿

Ongoing/Future Work
• Use early stopping in model search

• Control early stopping via Bayesian optimization

𝑦𝑙𝑎𝑠𝑡 is evaluated at 𝑥𝑙𝑎𝑠𝑡, the
maximum number of epochs;
set to 300 epochs

𝑦1:𝑛
train

𝑦𝑙𝑎𝑠𝑡
test

