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* Deep networks critically depend on hyperparameters, but
training is expensive

* To automate a heuristic that experts use, we built a
probabilistic model to forecast the asymptotic accuracy of a
given parameter setting and stop all but the most promising
runs

* Simulation resulted in a 2.7-fold reduction of overall runtime

* |t takes very few SGD iterations for a human expert to tell good from
bad parameter settings

* Yet in hyperparameter optimization every setting is run to the very end

* Automating the prediction of performance could save a lot of time
and speed up preliminary evaluations during development

Model Search

* Search over structure and hyperparameters of deep
networks:

* 81 parameters in total, namely 9 network parameters and
12 parameters for each of up to 6 layers

* Neural network software: Caffe [Jia 2013]

* Bayesian optimization methods:
/SMAC (Sequential Model-based \ ﬁPE (Tree Parzen Estimator) is \

algorithm configuration) is based on based on Gaussian Mixture Models.
random forests and can handle Supports conditional, continuous
continuous, discrete and conditional and discrete parameters and also

hyperparameters. priors over them.
[Hutter, Hoos, and Leyton-Brown, [Bergstra, Bardenet, Bengio, and
\ 2011] / \Keégl, 2011] -/

°* 5 runs of both SMAC and TPE
* Evaluated a total of 800 networks

 Dataset: k-means features extracted from CIFAR10
[Krizhevsky 2009; Coates 2011]
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Extrapolation

Problem definition

* Given data points y;.,, we would to like to forecast the future
performance y;,.; probabilistically

Viast 1S €valuated at x4, the
maximum number of epochs;
set to 300 epochs
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Approach

* Selected k = 10 parametric model families
that roughly match learning curves’ shape (typically increasing,
saturating functions)
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* Representative power increased by convex combination of individual
models:

© f(x) =X wif;(x]0;) + € withe ~N(0,0%) and XK, w; =1
* Model uncertainty captured by MCMC
* The prior encoded monotonicity assumption of each of the models

* We obtained S = 100000 samples from 100 parallel chains of length
1500 with a burn-in of 500

* Let & be the model’s parameters (W5, ..., Wy, 04, ..., 0y, 0%)
* Probability of improving over current best parameter setting:
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Experiments

* Example extrapolation:
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* Quality of predictions:
* RMSE of residual E|y,,,] — Vgt

% train 10% 30% 50% 70% 90%

RMSE 0.082 0.046 0.026 0.010 0.011

* VY145t iINfover/under 90% interval:

% train 10% 30% 50% 70% 90%
Viast 1IN 42.54 % 48.51% 61.94 % 80.45 % 91.04 %
Viast Over 12.69 % 9.70 % 8.96 % 6.77 % 6.72%
Viast Under 44.77 % 41.79 % 29.10 % 12.78 % 2.24 %

* Model tends to be overconfident based on little data, but rarely
underpredict

* Simulated early stopping in optimization
* Replayed all 800 runs

* Stopped a run when probability of improving over current best got
too small: P(Ylast = Vpest | :V1:n) <1%
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* Reached the same accuracy
» 2.7-fold speedup

1
° P(ywst = Vpest | :V1:n) ~ §Z§=1P(YZast = Vpest | E(S)» Vin)

Ongoing/Future Work

* Use early stopping in model search

* Control early stopping via Bayesian optimization




