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Abstract
Bayesian optimization techniques have been suc-
cessfully applied to robotics, planning, sensor
placement, recommendation, advertising, intelli-
gent user interfaces and automatic algorithm con-
figuration. Despite these successes, the approach
is restricted to problems of moderate dimension,
and several workshops on Bayesian optimization
have identified its scaling to high dimensions as
one of the holy grails of the field. In this paper,
we introduce a novel random embedding idea to at-
tack this problem. The resulting Random EMbed-
ding Bayesian Optimization (REMBO) algorithm
is very simple and applies to domains with both
categorical and continuous variables. The exper-
iments demonstrate that REMBO can effectively
solve high-dimensional problems, including auto-
matic parameter configuration of a popular mixed
integer linear programming solver.

1 Introduction
Let f : X → R be a function on a compact subset X ⊆ RD.
We address the following global optimization problem

x? = arg max
x∈X

f(x).

We are particularly interested in objective functions f that
may satisfy one or more of the following criteria: they do not
have a closed-form expression, are expensive to evaluate, do
not have easily available derivatives, or are non-convex. We
treat f as a blackbox function that only allows us to query its
function value at arbitrary x ∈ X . To address objectives of
this challenging nature, we adopt the Bayesian optimization
framework. There is a rich literature on Bayesian optimiza-
tion, and we refer readers unfamiliar with the topic to more
tutorial treatments [Brochu et al., 2009; Jones et al., 1998;
Jones, 2001; Lizotte et al., 2011; Močkus, 1994; Osborne et
al., 2009] and recent theoretical results [Srinivas et al., 2010;
de Freitas et al., 2012].

In a nutshell, in order to optimize a blackbox function f ,
Bayesian optimization uses a prior distribution that captures
our beliefs about the behavior of f , and updates this prior
with sequentially acquired data. Specifically, it iterates the

following phases: (1) use the prior to decide at which input
x ∈ X to query f next; (2) evaluate f(x); and (3) update
the prior based on the new data 〈x, f(x)〉. Step 1 uses a so-
called acquisition function that quantifies the expected value
of learning the value of f(x) for each x ∈ X . Bayesian op-
timization methods differ in their choice of prior and their
choice of this acquisition function.

In recent years, the artificial intelligence community has
increasingly used Bayesian optimization; see for exam-
ple [Martinez–Cantin et al., 2009; Brochu et al., 2009; Srini-
vas et al., 2010; Hoffman et al., 2011; Lizotte et al., 2011;
Azimi et al., 2012]. Despite many success stories, the ap-
proach is restricted to problems of moderate dimension, typ-
ically up to about 10; see for example the excellent and very
recent overview in [Snoek et al., 2012]. Of course, for a great
many problems this is all that is needed. However, to advance
the state of the art, we need to scale Bayesian optimization to
high-dimensional parameter spaces. This is a difficult prob-
lem: To ensure that a global optimum is found, we require
good coverage of X , but as the dimensionality increases, the
number of evaluations needed to cover X increases exponen-
tially.

For linear bandits, Carpentier et al [2012] recently pro-
posed a compressed sensing strategy to attack problems with
a high degree of sparsity. Also recently, Chen et al [2012]
made significant progress by introducing a two stage strategy
for optimization and variable selection of high-dimensional
GPs. In the first stage, sequential likelihood ratio tests with
a couple of tuning parameters are used to select the rele-
vant dimensions. This, however, requires the relevant di-
mensions to be axis-aligned with an ARD kernel. Chen et al
provide empirical results only for synthetic examples (of up
to 400 dimensions), but they provide key theoretical guaran-
tees. Hutter et al [2011] used Bayesian optimization with ran-
dom forests based on frequentist uncertainty estimates. Their
method does not have theoretical guarantees for continuous
optimization, but it achieved state-of-the-art performance for
tuning up to 76 parameters of algorithms for solving combi-
natorial problems.

Many researchers have noted that for certain classes
of problems most dimensions do not change the objec-
tive function significantly; examples include hyper-parameter
optimization for neural networks and deep belief net-
works [Bergstra and Bengio, 2012] and automatic configura-



xx
1

2

x

1

2

x

Em
bed

din
g

Unimportant

Im
p

o
rt

a
n

t

x

x*

*

Figure 1: This function in D=2 dimesions only has d=1
effective dimension: the vertical axis indicated with the
word important on the right hand side figure. Hence, the
1-dimensional embedding includes the 2-dimensional func-
tion’s optimizer. It is more efficient to search for the opti-
mum along the 1-dimensional random embedding than in the
original 2-dimensional space.
tion of state-of-the-art algorithms for solvingNP-hard prob-
lems [Hutter et al., 2013]. That is to say these problems
have “low effective dimensionality”. To take advantage of
this property, [Bergstra and Bengio, 2012] proposed to sim-
ply use random search for optimization – the rationale being
that points sampled uniformly at random in each dimension
can densely cover each low-dimensional subspace. As such,
random search can exploit low effective dimensionality with-
out knowing which dimensions are important. In this paper,
we exploit the same property, while still capitalizing on the
strengths of Bayesian optimization. By combining random-
ization with Bayesian optimization, we are able to derive a
new approach that outperforms each of the individual com-
ponents.

Figure 1 illustrates our approach in a nutshell. Assume
we know that a given D = 2 dimensional black-box func-
tion f(x1, x2) only has d = 1 important dimensions, but
we do not know which of the two dimensions is the impor-
tant one. We can then perform optimization in the embed-
ded 1-dimensional subspace defined by x1 = x2 since this is
guaranteed to include the optimum. This idea enables us to
perform Bayesian optimization in a low-dimensional space to
optimize a high-dimensional function with low intrinsic di-
mensionality. Importantly, it is not restricted to cases with
axis-aligned intrinsic dimensions.

2 Bayesian Optimization
Bayesian optimization has two ingredients that need to be
specified: The prior and the acquisition function. In this
work, we adopt GP priors. We review GPs very briefly and re-
fer the interested reader to [Rasmussen and Williams, 2006].
A GP is a distribution over functions specified by its mean
function m(·) and covariance k(·, ·). More specifically, given
a set of points x1:t, with xi ⊆ RD, we have

f(x1:t) ∼ N (m(x1:t),K(x1:t,x1:t)),

where K(x1:t,x1:t)i,j = k(xi,xj) serves as the covariance
matrix. A common choice of k is the squared exponential
function, but many other choices are possible depending on
our degree of belief about the smoothness of the objective
function.

An advantage of using GPs lies in their analytical tractabil-
ity. In particular, given observations x1:n with corresponding

values f1:t, where fi = f(xi), and a new point x∗, the joint
distribution is given by:[

f1:t
f∗

]
∼ N

(
m(x1:t),

[
K(x1:t,x1:t) k(x1:t,x

∗)
k(x∗,x1:t) k(x∗,x∗)

])
.

For simplicity, we assume that m(x1:t) = 0. Using the
Sherman-Morrison-Woodbury formula, one can easily arrive
at the posterior predictive distribution:

f∗|Dt,x∗ ∼ N (µ(x∗|Dt), σ(x∗|Dt)),
with data Dt = {x1:t, f1:t}, mean µ(x∗|Dt) =
k(x∗,x1:t)K(x1:t,x1:t)

−1f1:t and variance σ(x∗|Dt) =
k(x∗,x∗) − k(x∗,x1:t)K(x1:t,x1:t)

−1k(x1:t,x
∗). That is,

we can compute the posterior predictive mean µ(·) and vari-
ance σ(·) exactly for any point x∗.

At each iteration of Bayesian optimization, one has to
re-compute the predictive mean and variance. These two
quantities are used to construct the second ingredient of
Bayesian optimization: The acquisition function. In this
work, we report results for the expected improvement acqui-
sition function u(x|Dt) = E(max{0, ft+1(x)− f(x+)}|Dt)
[Močkus, 1982; Bull, 2011]. In this definition, x+ =
arg maxx∈{x1:t} f(x) is the element with the best objective
value in the first t steps of the optimization process. The
next query is: xt+1 = arg maxx∈X u(x|Dt). Note that
this utility favors the selection of points with high variance
(points in regions not well explored) and points with high
mean value (points worth exploiting). We also experimented
with the UCB acquisition function [Srinivas et al., 2010;
de Freitas et al., 2012] and found it to yield similar results.
The optimization of the closed-form acquisition function can
be carried out by off-the-shelf numerical optimization pro-
cedures. The Bayesian optimization procedure is shown in
Algorithm 1.

Algorithm 1 Bayesian Optimization
1: for t = 1, 2, . . . do
2: Find xt+1 ∈ RD by optimizing the acquisition func-

tion u: xt+1 = arg maxx∈X u(x|Dt).
3: Augment the data Dt+1 = {Dt, (xt+1, f(xt+1))}
4: end for

3 REMBO
Before introducing our new algorithm and its theoretical
properties, we need to define what we mean by effective di-
mensionality formally.
Definition 1. A function f : RD → R is said to have effective
dimensionality de, with de < D, if there exists a linear sub-
space T of dimension de such that for all x> ∈ T ⊂ RD and
x⊥ ∈ T ⊥ ⊂ RD, we have f(x) = f(x> + x⊥) = f(x>),
where T ⊥ denotes the orthogonal complement of T . We call
T the effective subspace of f and T ⊥ the constant subspace.

This definition simply states that the function does not
change along the coordinates x⊥, and this is why we refer
to T ⊥ as the constant subspace. Given this definition, the
following theorem shows that problems of low effective di-
mensionality can be solved via random embedding.



Theorem 2. Assume we are given a function f : RD →
R with effective dimensionality de and a random matrix
A ∈ RD×d with independent entries sampled according to
N (0, 1) and d ≥ de. Then, with probability 1, for any
x ∈ RD, there exists a y ∈ Rd such that f(x) = f(Ay).

Proof. Since f has effective dimensionality de, there exists
an effective subspace T ⊂ RD, such that rank(T ) = de.
Furthermore, any x ∈ RD decomposes as x = x> + x⊥,
where x> ∈ T and x⊥ ∈ T ⊥. Hence, f(x) = f(x>+x⊥) =
f(x>). Therefore, without loss of generality, it will suffice to
show that for all x> ∈ T , there exists a y ∈ Rd such that
f(x>) = f(Ay).

Let Φ ∈ RD×de be a matrix, whose columns form an or-
thonormal basis for T . Hence, for each x> ∈ T , there exists
a c ∈ Rde such that x> = Φc. Let us for now assume that
ΦTA has rank de. If ΦTA has rank de, there exists a y such
that (ΦTA)y = c. The orthogonal projection of Ay onto T
is given by ΦΦTAy = Φc = x>. Thus Ay = x> + x′

for some x′ ∈ T ⊥ since x> is the projection Ay onto T .
Consequently, f(Ay) = f(x> + x′) = f(x>).

It remains to show that, with probability one, the matrix
ΦTA has rank de. Let Ae ∈ RD×de be a submatrix of A
consisting of any de columns of A, which are i.i.d. samples
distributed according to N (0, I). Then, ΦTai are i.i.d. sam-
ples from N (0,ΦTΦ) = N (0de , Ide×de), and so we have
ΦTAe, when considered as an element of Rd2e , is a sample
from N (0d2e , Id2e×d2e). On the other hand, the set of singu-
lar matrices in Rd2e has Lebesgue measure zero, since it is
the zero set of a polynomial (i.e. the determinant function)
and polynomial functions are Lebesgue measurable. More-
over, the Normal distribution is absolutely continuous with
respect to the Lebesgue measure, so our matrix ΦTAe is al-
most surely non-singular, which means that it has rank de
and so the same is true of ΦTA, whose columns contain the
columns of ΦTAe.

Theorem 2 says that given any x ∈ RD and a random ma-
trix A ∈ RD×d, with probability 1, there is a point y ∈ Rd
such that f(x) = f(Ay). This implies that for any opti-
mizer x? ∈ RD, there is a point y? ∈ Rd with f(x?) =
f(Ay?). Therefore, instead of optimizing in the high dimen-
sional space, we can optimize the function g(y) = f(Ay) in
the lower dimensional space. This observation gives rise to
our new algorithm Bayesian Optimization with Random Em-
bedding (REMBO), described in Algorithm 2. REMBO first
draws a random embedding (given by A) and then performs
Bayesian optimization in this embedded space.

An important detail is how REMBO chooses the bounded
region Y , inside which it performs Bayesian optimization.
This is important because its effectiveness depends on the
size of Y . Locating the optimum within Y is easier if Y is
small, but if we set Y too small it may not actually contain
the global optimizer (see Figure 2). In the following theorem,
we show that we can choose Y in a way that only depends on
the effective dimensionality de such that the optimizer of the
original problem is contained in the low-dimensional space

Algorithm 2 REMBO: Bayesian Optimization with Random
Embedding

1: Generate a random matrix A
2: Choose the set Y
3: for t = 1, 2, . . . do
4: Find yt+1 ∈ Rd by optimizing the acquisition function

u: yt+1 = arg maxy∈Y u(y|Dt).
5: Augment the data Dt+1 = {Dt, (yt+1, f(Ayt+1)}
6: Update the kernel hyper-parameters.
7: end for
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Figure 2: Embedding from d = 1 into D = 2. The box
illustrates the 2D constrained space X , while the thicker red
line illustrates the 1D constrained space Y . Note that if Ay is
outside X , it is projected onto X . The set Y must be chosen
large enough so that the projection of its image, AY , onto the
effective subspace (vertical axis in this diagram) covers the
vertical side of the box.

with constant probability. (If Ay is outside the box X , it is
projected onto X .)

Theorem 3. Suppose we want to optimize a function f :
RD → R with effective dimension de ≤ d subject to the
box constraint X ⊂ RD, where X is centered around 0. Let
us denote one of the optimizers by x?. Suppose further that
the effective subspace T of f is such that T is the span of de
basis vectors. Let x?> ∈ T ∩ X be an optimizer of f inside
T . If A is a D×d random matrix with independent standard
Gaussian entries, there exists an optimizer y? ∈ Rd such that
f(Ay?) = f(x?>) and ‖y?‖2 ≤

√
de
ε ‖x

?
>‖2 with probability

at least 1− ε.

Proof. Since X is a box constraint, by projecting x? to T we
get x?> ∈ T ∩ X . Also, since x? = x?> + x⊥ for some x⊥ ∈
T ⊥, we have f(x?) = f(x?>). Hence, x?> is an optimizer.
By using the same argument as appeared in Theorem 2, it is
easy to see that with probability 1 ∀x ∈ T ∃y ∈ Rd such
that Ay = x + x⊥ where x⊥ ∈ T ⊥. Let Φ be the matrix
whose columns form a standard basis for T . Without loss
of generality, we can assume that Φ = [Ide 0]T . Then, as
shown in Proposition 2, there exists a y? ∈ Rd such that
ΦΦTAy? = x?>. Note that for each column of A, we have

ΦΦTai ∼ N
(

0,

[
Ide 0
0 0

])
.



Therefore ΦΦTAy? = x?> is equivalent to By? = x̄?>
where B ∈ Rde×de is a random matrix with independent
standard Gaussian entries and x̄?> is the vector that contains
the first de entries of x?> (the rest are 0’s). By Theorem 3.4 of
[Sankar et al., 2003], we have

P
[
‖B−1‖2 ≥

√
de
ε

]
≤ ε.

Thus, with probability at least 1 − ε, ‖y?‖ ≤
‖B−1‖2‖x̄?>‖2 = ‖B−1‖2‖x?>‖2 ≤

√
de
ε ‖x

?
>‖2.

Theorem 3 says that if the set X in the original space is
a box constraint, then there exists an optimizer x?> ∈ X
that is de-sparse such that with probability at least 1 − ε,
‖y?‖2 ≤

√
de
ε ‖x

?
>‖2 where f(Ay?) = f(x?>). If the box

constraint is X = [−1, 1]D (which is always achievable
through rescaling), we have with probability at least 1 − ε
that

‖y?‖2 ≤
√
de
ε
‖x?>‖2 ≤

√
de
ε

√
de.

Hence, to choose Y , we just have to make sure that the ball of
radius de/ε satisfies (0, deε ) ⊆ Y . In most practical scenarios,
we found that the optimizer does not fall on the boundary
which implies that ‖x?>‖2 < de. Thus setting Y too big may
be unnecessarily wasteful. In all our experiments we set Y to
be [−

√
d,
√
d]d.

Theorem 3 only guarantees that Y contains the optimum
with probability at least 1 − ε; with probability δ ≤ ε the
optimizer lies outside of Y . There are several ways to guard
against this problem. One is to simply run REMBO multi-
ple times with different independently drawn random embed-
dings. Since the probability of failure with each embedding
is δ, the probability of the optimizer not being included in the
considered space of k independently drawn embeddings is δk.
Thus, the failure probability vanishes exponentially quickly
in the number of REMBO runs, k. Note also that these inde-
pendent runs can be trivially parallelized to harness the power
of modern multi-core machines and large compute clusters.

3.1 Choice of Kernel
We begin our discussion on kernels with the definition of the
squared exponential kernel between two points, y(1),y(2), on
Y ⊆ Rd. Given a length scale r > 0, we define the corre-
sponding squared exponential kernel as

kd` (y(1),y(2)) = exp

(
−‖y

(1) − y(2)‖2

2`2

)
.

It is possible to work with two variants of this kernel. First,
we can use kd` (y1,y2) as above. We refer to this kernel as
the low-dimensional kernel. We can also adopt an implicitly
defined high-dimensional kernel on X :

kD` (y(1),y2) = exp

(
−‖pX (Ay(1))− pX (Ay(2))‖2

2`2

)
,

where pX : RD → RD is the standard projection operator
for our box-constraint: pX (y) = arg minz∈X ‖z − y‖2; see
Figure 2.

Note that when using the high-dimensional kernel, we are
fitting the GP in D dimensions. However, the search space
is no longer the box X , but it is instead given by the much
smaller subspace {pX (Ay) : y ∈ Y}. Importantly, in prac-
tice it is easier to maximize the acquisition function in this
subspace. Our experiment on automatic algorithm configura-
tion will show that indeed optimizing the acquisition function
in low dimensions leads to significant gains of REMBO over
standard Bayesian optimization.

The low-dimensional kernel has the benefit of only having
to construct a GP in the space of intrinsic dimensionality d,
whereas the high-dimensional kernel has to construct the GP
in a space of extrinsic dimensionalityD. However, the choice
of kernel also depends on whether our variables are continu-
ous, integer or categorical. The categorical case is important
because we often encounter optimization problems that con-
tain discrete choices. We define our kernel for categorical
variables as:

kDλ (y(1),y(2)) = exp

(
−λ

2
g(s(Ay(1)), s(Ay(2)))2

)
,

where y(1),y(2) ∈ Y ⊂ Rd and g defines the distance be-
tween 2 vectors. The function s maps continuous vectors
to discrete vectors. In more detail, s(x) first projects x to
[−1, 1]D to generate x̄. For each dimension x̄i of x̄, s then
maps x̄i to the corresponding discrete parameters by scaling
and rounding. In our experiments, following [Hutter, 2009],
we defined g(x(1),x(2)) = |{i : x

(1)
i 6= x

(2)
i }| so as not to

impose an artificial ordering between the values of categorical
parameters. In essence, we measure the distance between two
points in the low-dimensional space as the distance between
their mappings in the high-dimensional space.

Our demonstration of REMBO, in the domain of algorithm
configuration, will use the high-dimensional kernel because
the parameters in need of tuning are categorical. However, to
provide the reader with a taste of the potential gains that the
low-dimensional kernel could offer in continuous spaces, we
will use a synthetic optimization problem. This synthetic ex-
ample will also allow us to easily discuss different properties
of the algorithm, including rotational invariance and depen-
dency on d.

Finally, when using the high-dimensional kernel, the regret
bounds of [Srinivas et al., 2010; Bull, 2011; de Freitas et al.,
2012] apply. For the low-dimensional case, we have derived
regret bounds that only depend on the intrinsic dimensional-
ity. For lack of space, these are covered in a longer technical
report version of this paper [Wang et al., 2013].

4 Experiments
For all our experiments, we used a single robust version of
REMBO that automatically sets its GP’s length scale param-
eter using a variant of maximum likelihood (see the technical
report [Wang et al., 2013] for details). For each optimization
of the acquisition function, this version runs both DIRECT
[Jones et al., 1993] and CMA-ES [Hansen and Ostermeier,
2001] and uses the result of the better of the two. Source
code for REMBO, as well as all data used in our experiments
is publicly available at https://github.com/ziyuw/
rembo.

https://github.com/ziyuw/rembo
https://github.com/ziyuw/rembo


Figure 3: Comparison of random search (RANDOM), Bayesian optimization (BO), method by [Chen et al., 2012] (HD BO),
and REMBO. Left: D = 25 extrinsic dimensions; Middle: D = 25, with a rotated objective function; Right: D = 109 extrinsic
dimensions. We plot means and 1/4 standard deviation confidence intervals of the optimality gap across 50 trials.

4.1 Bayesian Optimization in a Billion Dimensions
The experiments in this section employ a standard de = 2-
dimensional benchmark function for Bayesian optimization,
embedded in a D-dimensional space. That is, we add D − 2
additional dimensions which do not affect the function at
all. More precisely, the function whose optimum we seek
is f(x1:D) = g(xi, xj), where g is the Branin function (for
its exact formula, see [Lizotte, 2008]) and where i and j are
selected once using a random permutation. To measure the
performance of each optimization method, we used the opti-
mality gap: the difference of the best function value it found
and the optimal function value.

k d = 2 d = 4 d = 6
10 0.0022± 0.0035 0.1553± 0.1601 0.4865± 0.4769
5 0.0004± 0.0011 0.0908± 0.1252 0.2586± 0.3702
4 0.0001± 0.0003 0.0654± 0.0877 0.3379± 0.3170
2 0.1514± 0.9154 0.0309± 0.0687 0.1643± 0.1877
1 0.7406± 1.8996 0.0143± 0.0406 0.1137± 0.1202

Table 1: Optimality gap for de = 2-dimensional Branin func-
tion embedded in D = 25 dimensions, for REMBO variants
using a total of 500 function evaluations. The variants dif-
fered in the internal dimensionality d and in the number of
interleaved runs k (each such run was only allowed 500/k
function evaluations). We show mean and standard deviations
of the optimality gap achieved after 500 function evaluations.

We evaluate REMBO using a fixed budget of 500 function
evaluations that is spread across multiple interleaved runs —
for example, when using k = 4 interleaved REMBO runs,
each of them was only allowed 125 function evaluations. We
study the choices of k and d by considering several combi-
nations of these values. The results in Table 1 demonstrate
that interleaved runs helped improve REMBO’s performance.
We note that in 13/50 REMBO runs, the global optimum was
indeed not contained in the box Y REMBO searched with
d = 2; this is the reason for the poor mean performance of
REMBO with d = 2 and k = 1. However, the remaining
37 runs performed very well, and REMBO thus performed
well when using multiple interleaved runs: with a failure
rate of 13/50=0.26 per independent run, the failure rate us-
ing k = 4 interleaved runs is only 0.264 ≈ 0.005. One
could easily achieve an arbitrarily small failure rate by using
many independent parallel runs. Using a larger d is also effec-
tive in increasing the probability of the optimizer falling into
REMBO’s box Y but at the same time slows down REMBO’s

convergence (such that interleaving several short runs loses
its effectiveness).

Next, we compared REMBO to standard Bayesian opti-
mization (BO) and to random search, for an extrinsic dimen-
sionality of D = 25. Standard BO is well known to perform
well in low dimensions, but to degrade above a tipping point
of about 15-20 dimensions. Our results for D = 25 (see
Figure 3, left) confirm that BO performed rather poorly just
above this critical dimensionality (merely tying with random
search). REMBO, on the other hand, still performed very
well in 25 dimensions.

One important advantage of REMBO is that — in contrast
to the approach of [Chen et al., 2012] — it does not require
the effective dimension to be coordinate aligned. To demon-
strate this fact empirically, we rotated the embedded Branin
function by an orthogonal rotation matrix R ∈ RD×D. That
is, we replaced f(x) by f(Rx). Figure 3 (middle) shows
that REMBO’s performance is not affected by this rotation.
Finally, since REMBO is independent of the extrinsic dimen-
sionalityD as long as the intrinsic dimensionality de is small,
it performed just as well in D = 1 000 000 000 dimensions
(see Figure 3, right). To the best of our knowledge, the only
other existing method that can be run in such high dimension-
ality is random search.

For reference, we also evaluated the method of [Chen et al.,
2012] for these functions, confirming that it does not handle
rotation gracefully: while it performed best in the non-rotated
case for D = 25, it performed worst in the rotated case.
It could not be used efficiently for more than D = 1, 000.
Based on a Mann-Whitney U test with Bonferroni multiple-
test correction, all performance differences were statistically
significant, except Random vs. standard BO.

4.2 Automatic Configuration of a Mixed Integer
Linear Programming Solver

State-of-the-art algorithms for solving hard computational
problems tend to parameterize several design choices in or-
der to allow a customization of the algorithm to new prob-
lem domains. Automated methods for algorithm configura-
tion have recently demonstrated that substantial performance
gains of state-of-the-art algorithms can be achieved in a fully
automated fashion [Močkus et al., 1999; Hutter et al., 2010;
Vallati et al., 2011; Bergstra et al., 2011; Wang and de Freitas,
2011]. These successes have led to a paradigm shift in algo-
rithm development towards the active design of highly param-



Figure 4: Performance for configuration of lpsolve; we
show the optimality gap lpsolve achieved with the con-
figurations found by the various methods (lower is better).
Top: a single run of each method; Bottom: performance with
k = 4 interleaved runs. We plot means and 1/4 standard
deviations over 20 repetitions of the experiment.

eterized frameworks that can be automatically customized to
particular problem domains using optimization [Hoos, 2012;
Bergstra et al., 2012].

It has recently been demonstrated that many algorithm con-
figuration problems have low dimensionality [Hutter et al.,
2013]. Here, we demonstrate that REMBO can exploit this
low dimensionality even in the discrete spaces typically en-
countered in algorithm configuration. We use a configuration
problem obtained from [Hutter et al., 2010], aiming to config-
ure the 40 binary and 7 categorical parameters of lpsolve1,
a popular mixed integer linear programming solver that has
been downloaded over 40 000 times in the last year. The
objective is to minimize the optimality gap lpsolve can
obtain in a time limit of five seconds for a mixed integer
programming (MIP) encoding of a wildlife corridor problem
from computational sustainability [Gomes et al., 2008]. Al-
gorithm configuration aims to improve performance for a rep-
resentative set of problem instances, and effective methods
need to solve two orthogonal problems: searching the pa-
rameter space effectively and deciding how many resources
to spend in each evaluation (to trade off computational over-
head and over-fitting). Our contribution is for the first of these
problems; to focus on how effectively the different methods
search the parameter space, we only consider configuration

1http://lpsolve.sourceforge.net/

on a single problem instance (i.e., a deterministic blackbox
optimization problem; further work is required to tackle gen-
eral algorithm configuration problems with randomized algo-
rithms and distributions of problem instances).

Due to the discrete nature of this optimization problem, we
could only apply REMBO using the high-dimensional kernel
for categorical variables kDλ (y(1),y(2)) described in Section
3.1. While we have not proven any theoretical guarantees
for discrete optimization problems, REMBO appears to ef-
fectively exploit the low effective dimensionality of at least
this particular optimization problem.

Figure 4 (top) compares BO, REMBO, and the baseline
random search against ParamILS (which was used for all con-
figuration experiments in [Hutter et al., 2010]) and SMAC
[Hutter et al., 2011]. ParamILS and SMAC were specifically
designed for the configuration of algorithms with many dis-
crete parameters and define the current state of the art for this
problem. Nevertheless, here SMAC and our vanilla REMBO
method performed best. Based on a Mann-Whitney U test
with Bonferroni multiple-test correction, they both yielded
statistically significantly better results than both Random and
standard BO; no other performance differences were signif-
icant. The figure only shows REMBO with d = 5 to avoid
clutter, but we did not optimize this parameter; the only other
value we tried (d = 3) resulted in indistinguishable .

As in the synthetic experiment, REMBO’s performance
could be further improved by using multiple interleaved runs.
However, it is known that multiple independent runs also ben-
efit the other procedures, especially ParamILS [Hutter et al.,
2012]. Thus, to be fair, we re-evaluated all approaches us-
ing interleaved runs. Figure 4 (bottom) shows that ParamILS
and REMBO benefitted most from interleaving k = 4 runs.
However, the statistical test results did not change, still show-
ing that SMAC and REMBO outperformed Random and BO,
with no other significant performance differences.

5 Conclusion
This paper has shown that it is possible to use random em-
beddings in Bayesian optimization to optimize functions of
high extrinsic dimensionality D, provided that they have low
intrinsic dimensionality de. The new algorithm, REMBO,
only requires a simple modification of the original Bayesian
optimization algorithm; namely multiplication by a random
matrix. We confirmed REMBO’s independence of D em-
pirically by optimizing low-dimensional functions embedded
in high dimensions. Finally, we demonstrated that REMBO
achieves excellent performance for optimizing the 47 discrete
parameters of a popular mixed integer programming solver,
thereby providing further evidence for the observation (al-
ready put forward by Bergstra, Hutter and colleagues) that,
for many problems of great practical interest, the number
of important dimensions indeed appears to be much lower
than their extrinsic dimensionality. Of course, we do not yet
know how many practical optimization problems fall within
the class of problems where REMBO applies. With time and
the release of the code, we will find more evidence. For the
time being, the success achieved in the examples presented in
this paper is very encouraging.
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