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Bayesian Optimization is a powerful technique for finding the global optimizer of blackbox functions.
Users want to know more: which inputs are important, the effects of which ones are correlated?

* We use functional ANOVA to provide such information, based on efficient operations in random forests.

Efficient Marginal Performance Predictions in Random Forests

Basic Definitions (only for reference) = IMain Definition and Results  Experiment (on ground truth data)
Let A be an algorithm having n parameters with domains Definition 5 (Marginal performance). Let A’s (true) per- Online LDA [Hoffman et al, "10] -Wlth 3 Parameters.
@) ©,,. We use integers to denote the parameters, and formancebey : © = R, U C N, and T = N\U. A’s Performance known for 288-point grid;
Nliic; '1‘1.3%61‘?(.) the set {1 2 n) of all pararrrl)eters of A’ marginal performance a; (0y) is then defined as 100 randomly sampled grid points used for training
Definition 1 (Configuration space ®). A’s configuration av(0v) = Ely@nw) |0y € X(0v)] o Parameter r Parameter ’0 Parameter 5
space is @ = O x --- x O,,. ‘q"% - 30000
Definition 2 (Parameter Instantiation). A complete instan- R / y(Onv)dO7. :8;2500 5 200 g
tiation of an algorithm’s n parameters is a vector 0 = O 20008 0l s D
0, ... ’J;n> wi§1 h. € @i_p We also refer to complete Similarly, A’s marginal predicted performance ay (017) un- gbwoolm_jf:";'jf“' o | - o @:
parameter instantiations as parameter configurations. A der amodel j : © — R is <o o f;:'g 1 fw N " s ml o
partial instantiation of a subset U = {uy,...,upn} C€ N Main ettects tor Online LDA's perplexity
of A’s parameters is a vector Oy = (Oy,, ..., 0y, ) with ay(Ov) = 10,]] fy(BNIU)dQT- (1) Parameter Parameter 7y Parameter S
Theorem 6. Given the partitioning P of a regression tree QE)
Definition 3 (Extension Set). Let Oy = (6,,,...,0, ) T that defines a predictor i : ® — R, and a partial instan- =
be a partial instantiation of the parameters U = tiation @y of ©’s parameters N, T ’s marginal prediction =
{fuy,...,u;m} € N. The extension set X (0y) of Oy ay (0u ) can be computed as oh S
is then the set of parameter configurations QN\U = (z) <C 05 06 07 08 09 1 10° 10' : 10° 10° 10° 10’ : 10> 10°  10'
071, ...,0,,) such that Vj(j = ux = 05 = 0,,). Z N\U“ 16y (_)(,L-)) » Main effects for Online LDA’s runtime
. . . o 1@yl
Definition 4 (Range size). The range size ||.S|| of an empty
set S is ||Q|| = 1, for other finite S, the range size equals Corollary 8. Givena randor?z forest F'with B trees of up to
the cardinality: ; and for closed intervals S = L leaves that defines a predictor y : @ — R for a config- B
1, ] -products S = Sy X uration space with n parameters and maximal categorical = e
% § o Hk; 15,]] domain size D, the time and space complexity of computing £ S |
b =1 ' a single marginal prediction of F is O(B - L - max{D + & o | 0o
n,nlog D}). Additional marginal predictions cost addi- R
tional space O(1) and time O(B - L - nlog D). True and predicted interaction effect

Efficient Decomposition of Variance Application to Auto-WEKA (thornton et al, 2013]

Functional ANOVA (not new) Complexity with Random Forests 768 (1) parameters

lg)uncion]?{] ﬁzollﬁlgi{f:;ﬂ?Szfljnﬁnt?;?nogl E()lé an D>I<1 We can use our efficient marginal computations Four par:i\meters c.onsisten.tly turned out to bg Important:
subsets of its parameters IN: P > to compute these importance indices efficiently: * Machine Ie.armng algo.rlthm (out of 31 choices)
* Base algorithm to use in an ensemble
=) fu(6o). Theorem 9. Given a configuration space © consisting of * Feature selection: scoring mechanism for feature subsets
UCN n categorical® parameters of maximal domain size D and a * Feature search: search mechanism through feature subsets

regression tree '] with L leaves that defines a predictor 1 :
® — R, we can exactly compute the fractions of variance
explained by all subsets U of ©’s parameters N of arity up

The components fi7 (@) are defined as follows:
Main effect of the choice of machine learning algorithm

—1 JA 1 :r p— L] L] L]
fU(QU){ |@}||9f9' Z (O lf]i’ _19' to K, with space complexity O(L- D+ L-n) and time com- 100 1 1
{I,U U w (0w otherwise. ) K 95
weu 4 plexity O (L-D—i—zkzl (%) -Dk(L-nlogd—l—Qk)). f o
. L : : or CIFAR-10
The constant fj 1s the function’s mean across its domain. 85
The unary functions f;4(6;) are called main effects and To compute parameter importance in random forests, we 80
capture the effect of varying parameter j, averaging across simply apply Algorithm 2 for each tree, and compute 75
: .. . . 100
all instantiations of all other parameters. means and standard deviations across the results. 90
. : . : : . 80
By definition, the variance of 3 across its domain © 1s for MNIST 70
[ ] [ ] [ ] 60
A ; How to Use This in Practice 50
— e @| (7(0) — fy)°de. (5) , 30
Sl  Collect performance data by running coo g pccdcceIIETSITSTL 3333333333
. L . 2223323338V 000000000222020000 0
: : : : the algorithm with different parameter settings T 2220000000000 _DETTTTELED
and functional ANOVA decomposes this variance into con- . ot 5 >>22882H0S0INDECIDIISETZIOLZIIRQL
tribut; - (e.g., run Bayesian Optimization) S o000 0 5323558 &ML a2 sZELLT L
ributions by all subsets of variables (see, e.g., Hooker, ’ <22rzon "2°%389% " Zad Koo §E = a3l 0®
2007. for a derivation): * Fit a random forest model on that data % o g.i);,cé Es3 S S 335 gEd3 g 5333
. L~ = — M — - N Q O W
(can e.g., be the model already used in BayesOpt) = 53555 P 0 = S8 =2 ©§ it 55
. . . . = Q o) 3 - > Q (0))
Z V. where Vi = ! fo(QU)QdQU. * Determine important (pairs of) variables = 3 % ® S = i S 8373
UCN ©ul] * |nspect important main and interaction effects 3 8 ° O § SRR
=R 5
. . . : ® S =
The importance of all main and interaction effects fr; can +  Future work: use within Bayesian optimization 2 g

thus be quantified by the fraction of variance they explain: . : :
Fy = Vy/V. to iteratively focus on important parameters

Application to solvers for hard combinatorial problems (SAT, MIP, TSP)

_nf_ _ _ Raw Performance  Impr. over 25% quant. Impr. over def
* State-of-the-art solvers for NP-hard problems SAT, MIP, and TSP . Main | pormance | Wb over o o duant. | MPEOver ce = 0
* Between 4 and 76 parameters (choices of heuristics, etc) SPEAR-BMC 88% (25) 4% (1125)  [50% (Is) 15% (36s)  [26% (0s) 20% (23s) = =X
: SPEAR-SWV 76% (6s) 8% (348s)  |19% (1s) 21% (80s)  [74% (4s) 11% (250s) > =
* Performance highly dependent on these parameters CRYPTOMINISAT-BMC28% (1s) 18% (62s)  [31% (1s) 20% (39s) 6% (0s) 11% (5s) = 100/ ==
+ Ran SMAC [Hutter et al, “11] ten times for each benchmark CRYPTOMINISAT-SWV [37% (4s)  33% (182s) |9% (1s) 19% (44s) [24% (2s) 35% (70s) % -340_
: SPARROW-3SATIk 78% (0s)  15% (0s)  |53% (0s) 31% (0s)  [31% (0s) 34% (0s) © B
- achived speedups between 1.02x and 857x over default SPARROW-SSATS00  [|65% (0s) 28% (0s)  |57% (0s) 34% (0s)  |66% (0s) 27% (0s) _g . _g %
- : CAPTAINJACK-3SATIk [42% (9s) 9% (1321s) [21% (4s) 9% (599s) [37% (6s) 9% (832s) 3 9 |
- fitted random forests on the union of the performance data CAPTAINJACK-5SAT50020% (6s) 11% (917s)  |18% (2s) 12% (308s) [26% (5s) 12% (7265) o g ”
) : SATENSTEIN-3SATIK 5% (6s) 37% (845s) [23% (2s) 27% (296s) [27% (3s) 29% (334s) S 10
ran functional ANOVA on the random forest S ATENSTEIN-5SAT500 [33% (9s) 45% (1155s) |16% (3s) 32% (379s) [22% (5s5) 49% (648s) & £
CPLEX—RCW 58‘7 (58) 6% (7138) 16% (15) 339, (1998) 6% (18) 15(7 (1273) 0 012345678 910111213141516171819 0 01234567 8 910111213141516171819
: : : : . CPLEX-CORLAT 31% (29s) 7% (4361s) [16% (10s)22% (1427s)[30% (22s) 16% (3 129s) Main effect of Spear’s most important parameter
Main effects explained a large fraction of variance: see table CPLEX-Regions200  [61% (68s) 19% (10 4165)26% (26s) 33% (3 476s) |13% (225)27% (2 787s) . bl | P on heuristi P . P ¢
CPLEX-CLS 55% (143s) 5% (21 502s) 2% (43s) 4% (5725s) |5% (53s) 15% (6 047s) (its variable selection heuristic) on instances from
CLASP-WeightedSeq  [46% (13s) 13% (2368s) [27% (55) 20% (858s) [30% (6s) 20% (1047s) hardware verification (left) and software verification (right)

CLASP-Riposte 39% (103s)8% (18 518s) |10% (68s)3% (12213s)|15% (825) 3% (1 4362s)




