
Time-Bounded
Sequential Parameter Optimization

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Kevin Murphy

Department of Computer Science, University of British Columbia, Vancouver, Canada
{hutter,hoos,kevinlb,murphyk}@cs.ubc.ca

Abstract. The optimization of algorithm performance by automatically identify-
ing good parameter settings is an important problem that has recently attracted
much attention in the discrete optimization community. One promising approach
constructs predictive performance models and uses them to focus attention on
promising regions of a design space. Such methods have become quite sophisti-
cated and have achieved significant successes on other problems, particularly in
experimental design applications. However, they have typically been designed to
achieve good performance only under a budget expressed as a number of function
evaluations (e.g., target algorithm runs). In this work, we show how to extend the
Sequential Parameter Optimization framework [SPO; see 5] to operate effectively
under time bounds. Our methods take into account both the varying amount of
time required for different algorithm runs and the complexity of model build-
ing and evaluation; they are particularly useful for minimizing target algorithm
runtime. Specifically, we avoid the up-front cost of an initial design, introduce a
time-bounded intensification mechanism, and show how to reduce the overhead
incurred by constructing and using models. Overall, we show that our method
represents a new state of the art in model-based optimization of algorithms with
continuous parameters on single problem instances.

1 Introduction
Many high-performance algorithms have parameters whose settings largely determine
their effectiveness in a particular application context. Optimizing these parameters is
an important task for developers and end users of such algorithms. In general, given a
parameterized target algorithm A, a set (or distribution) of problem instances I and a
performance metric c, the goal is to find parameter settings of A that optimize c on I .
Often, the performance metric c is based on either the running time of A on I or on the
solution quality achieved by A on I within a given time budget.

Several automated approaches to solving this parameter optimization problem (also
called algorithm configuration or parameter tuning) have been investigated in the liter-
ature. These differ in whether or not explicit models (so-called response surfaces) are
used to describe the dependence of target algorithm performance on parameter settings,
and they also vary in the type and number of target algorithm parameters considered.
Much existing work deals with relatively small numbers of numerical (often continu-
ous) parameters [see, e.g., 8, 3, 1]). Existing model-based methods also typically fall
into this category [5, 9]. Some relatively recent model-free approaches permit both
larger numbers of parameters and categorical domains, in particular F-Race [7, 4] and
ParamILS [13, 12].

Model-based approaches are appealing since they can be used to quantify the im-
portance of each parameter, as well as interactions between parameters, and—in the
context of multiple instances—between parameters and instance characteristics. They
can support interpolation of performance between parameter settings, and, in principle,
extrapolation to previously-unseen regions of the parameter space. Thereby, they can
provide intuition about the parameter response that cannot be gathered from model-free
methods. This can be a substantial help to designers seeking to understand or improve
an algorithm.

This paper extends the Sequential Parameter Optimization (SPO) approach by Bartz-
Beielstein et al. [6, 5]. As in previous work on SPO [6, 5, 10], we consider randomized
target algorithms with numerical parameters, and limit ourselves to the simple case of
optimizing performance for a single problem instance at a time. (Such an instance may
be chosen as representative of a heterogeneous set or distribution.) This allows us to
focus on core conceptual issues that remain important when taking into account a set or
distribution of problem instances, while still retaining significant practical relevance. We
are actively investigating the issue of multiple instances in our ongoing work.

Here we propose three key improvements to SPO, to allow it to operate effectively
within a given time budget: (1) interleaved random parameter settings that eliminate the
need for a costly initial design; (2) a time-bounded intensification mechanism; and (3) re-
placing Gaussian process (GP) models with a computationally-efficient approximation
called projected process (PP) models. These improvements are particularly useful for pa-
rameter optimization tasks with the objective of minimizing algorithm runtime. However,
our methods can also be applied to other objectives (in fact, in one of our experiments
we minimize the number of search steps required to find a solution). In experiments
for optimizing a high-performance local search solver for various SAT instances, we
demonstrate that improvements (1) and (2) substantially reduce the amount of time re-
quired to find good parameter settings; that the PP models yield much better predictions
than the previously-used noise-free GP models while only taking about 1/30 of their
construction time; and that our resulting parameter optimization procedure—dubbed
TB-SPO(PP)—significantly outperforms the previous state of the art.

This paper is organized as follows. In Section 2, we build intuition for sequential
model-based optimization (SMBO) and discuss existing SMBO approaches. In Section
3, we introduce our extensions of this framework to time-bounded SPO. In Section 4,
we empirically study our new methods. We conclude the paper in Section 5.

2 Sequential Model-Based Optimization: Existing Work
Model-based optimization methods fit a regression model to given training data and
use this model for optimization. In the context of parameter optimization, a response
surface model is fitted to a training set {(θi, oi)}ni=1, where parameter setting θi =
(θi1, . . . ,θid)T is a complete instantiation of the d parameters of the given target algo-
rithm, and oi is the observed cost of the target algorithm run with parameter setting θi.
In sequential model-based optimization, the selection of new settings to be evaluated
can depend on previous observations.

2.1 An illustrative example
We demonstrate the generic SMBO framework with a simple example. Consider optimiz-
ing a deterministic algorithm with a single continuous parameter, where the algorithm’s

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p

o
n

s
e

 y

DACE mean prediction

DACE mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

(a) SMBO, step 1

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p

o
n

s
e

 y

DACE mean prediction

DACE mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

(b) SMBO, step 2
Fig. 1. Two steps of SMBO for the optimization of a 1D function. The true function is shown as a
solid line, the circles denote our observations. The dotted line denotes the mean prediction of the
DACE model (a noise-free Gaussian process model, see Section 2.2), with the grey area denoting
its uncertainty. Expected improvement (scaled for visualization) is shown as a dashed line.

performance as a function of its parameter is described by the solid line in Figure 1(a).
SMBO algorithms start by running the algorithm with a number of parameter settings
defined by a so-called initial design, typically based on a Latin hypercube design [LHD;
see 17] in the region of interest (the Cartesian product of the intervals considered for each
parameter). In Figure 1, circles denote the settings in the initial design. Next, SMBO fits
a response surface model to the data gathered. We discuss Gaussian process models, the
most commonly-used type of models, in Section 2.2. SMBO uses its predictive model of
performance to select settings for the next target algorithm run. In particular, it computes
a so-called expected improvement criterion to trade off learning about new, unknown
parts of the parameter space and intensifying the search locally in the best known region.
In Figure 1(a), the dashed line denotes one possible EIC, E[Iexp(θ)] [see 11], evaluated
throughout the region of interest. Note that EIC is high in regions of low predictive mean
and high predictive variance; these regions are most likely to contain parameter settings
θ with cost lower than that of the incumbent, θinc.

SMBO next identifies a set of parameter settings with promising EIC values, runs
the target algorithm on them, and updates its model based on the results. In our example,
we chose the single setting with maximal EIC; in Figure 1(b), note the additional data
point at x = 0.705. This data point changes the model, greatly reducing the uncertainty
around the new data point and splitting the next promising region in two.

2.2 Gaussian Process Regression Models

In most recent work on sequential model-based optimization, the model takes the form
of a Gaussian stochastic process [GP; 16]. To construct a GP model, first we need to
select a parameterized kernel function kλ : Θ ×Θ 7→ R+, specifying the similarity
between two parameter settings. We use the most commonly-used kernel function

K(θi,θj) = exp

[
d∑
l=1

(−λl · (θil − θjl)2)

]
, (1)

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

35

parameter x

re
s
p

o
n

s
e

 y

GP mean prediction

GP mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

(a) Standard GP fit

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

35

parameter x

re
s
p

o
n

s
e

 y

DACE mean prediction

DACE mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

(b) Noise-free GP fit on cost statistics
Fig. 2. Alternative ways of fitting a response surface to noisy observations. Note that we plot mean
± two standard deviations of the predictive mean; the predicted observation noise would need to
be added to this (but is zero for the noise-free model in (b)).

where λ1, . . . , λd are the kernel parameters. We also need to set the variance σ2 of
Gaussian-distributed observation noise (in parameter optimization, this corresponds
to the variance of the target algorithm’s runtime distribution). The predictive dis-
tribution of a zero-mean GP for response on+1 at input θn+1, given training data
D = {(θ1, o1), . . . , (θn, on)}, is then

p(on+1|θn+1,θ1:n,o1:n) = N (on+1|k∗T ·[K+σ2I]−1 ·o1:n, k∗∗−k∗T ·[K+σ2I]−1),
(2)

where

K =

k(θ1,θ1) . . . k(θ1,θn)
. . .

k(θn,θ1) . . . k(θn,θn)


k∗ = (k(θ1,θn+1), . . . , k(θn,θn+1))
k∗∗ = k(θn+1,θn+1) + σ2,

I is the n-dimensional identity matrix, and p(a|b) = N (a|µ,Σ) denotes that the con-
ditional distribution of a given b is a Gaussian with mean µ and covariance matrix Σ.
[See, e.g., 16, for a derivation.] The kernel parameters are typically set by maximizing
the marginal likelihood p(o1:N) with a gradient-based optimizer.

In the presence of observation noise (e.g., stemming from randomization in the
algorithm), we can use GP models in two possible ways. The standard approach is
simply to construct a model using the noisy data, treating the observation noise variance
σ2 as an additional kernel parameter to be optimized. Another possibility is to first
compute a (user-defined) empirical cost statistic, ĉ(θ), of the empirical distribution of
observed costs for each encountered parameter setting, θ, and to then fit a noise-free GP
model to these empirical cost statistics (fixing σ2 = 0).

We illustrate these two approaches in Figure 2. In that figure, the solid line is the
same true function as in the noise-free example in Figure 1(a), but we now have ten noisy
observations for each of the design points considered in the previous example, depicted

by circles. Note that at training data points θ, the noise-free GP model’s predictions
perfectly match the empirical cost statistic, ĉ(θ), with zero uncertainty. This is despite
the fact that the true cost often differs substantially from the empirical cost statistic
(especially if the latter is based on few runs and the observation noise is high).

2.3 Existing State of the Art
In our previous work [11], we studied further components of SMBO and compared two
prominent SMBO procedures: the sequential kriging optimization (SKO) algorithm by
Huang et al. [9] and the sequential parameter optimization (SPO) procedure by Bartz-
Beielstein et al. [6, 5]. We showed that SPO was more robust than SKO and primarily
attributed this to what we call SPO’s intensification mechanism, the strategy by which it
determines the number of runs executed for each parameter setting. We also developed a
new intensification mechanism, and demonstrated that the resulting algorithm, SPO+,
performed more robustly than SPO.

Besides the intensification mechanism, we identified two other components which
are likely to strongly affect performance. Firstly, we left open the question how to
choose the size of the initial design in SPO; there seemed to be no uniformly good
choice. Secondly, we found evidence that SPO and especially SKO benefited from a log
transformation of the data. We hypothesized that SKO’s standard GP models are superior
to SPO’s noise-free GP models under that transformation; however, these standard GPs
are computationally too expensive for the parameter optimization tasks we are interested
in. In the following, we address both of these issues and also improve our intensification
mechanism further, thereby substantially advancing the state of the art.

3 Time-Bounded SPO
The standard measure of a computational budget in blackbox function optimization is
the number of “function evaluations” (in our case, runs of the target algorithm). This
is meaningful if all target algorithm runs take the same amount of time and clearly
dominate any computational costs incurred by the parameter optimization procedure.
However, these conditions do not apply for the optimization of algorithm parameters,
where (1) some target algorithm runs can be much faster than others, and (2) in some
optimization scenarios target algorithm runs are fast compared to the overhead of the
optimization procedure. For example, an experiment of running SPO+ on SAPS-QWH

we described in our previous work [11] required about 10 CPU hours to perform its
allowed 20 000 target algorithms runs. Only about 10 minutes of this time was spent
actually running SAPS, for an average runtime of 30 milliseconds per target algorithm run.
Thus, in that case the computational overhead was a factor of 60. This paper introduces
approaches for reducing that overhead.

Algorithm Framework 1 gives the outline of a generic SMBO procedure with a time
budget. It initializes by running the target algorithm with the parameter settings in an
initial design, and then iterates three steps: (1) fitting a response surface model using
the existing data; (2) selecting a set of parameter settings to evaluate; and (3) running
the target algorithm on (a subset of) the selected settings until a given time bound is
reached. This time bound is related to the combined overhead, tmodel+ tei, due to fitting
the model and selecting a set of promising parameter settings.

In the following three sections, we will introduce an instantiation of this algorithm
framework corresponding to a time-bounded version of SPO, abbreviated TB-SPO. In

Algorithm Framework 1: Sequential Model-Based Optimization With a Time Budget.
Input : Target algorithm A
Output: Incumbent parameter setting, θinc

[R, θinc]← Initialize()1
repeat2

[M, tmodel]← FitModel(R)3

[~Θnew, tei]← SelectNewParameterSettings(M, θinc)4

[R,θinc]← Intensify(~Θnew, θinc,M, R, tmodel + tei)5
until total time budget for tuning exhausted6
return θinc7

Procedure 2: SelectNewParameterSettings(M,θinc) in TB-SPO
Input : Model,M; incumbent configuration, θinc

Output: Sequence of parameter configurations to evaluate, ~Θnew

// ===== Select parameter configurations with expected improvement
Θrand ← set of 10 000 elements drawn uniformly at random from Θ1
~Θei ←Θrand, sorted by decreasing E[Iexp(θ)] [for the formula, see 11]2
Let tei denote the total time spent computing expected improvement3

// ===== Interleave configurations with high EI, and random configurations
~Θnew ← []4
for i = 1, . . . , 10 000 do5

Append ~Θei[i] to ~Θnew6

Draw a parameter configuration θ uniformly at random from Θ and append it to ~Θnew7

return [~Θnew, tei]8

particular, we interleave random parameter settings to remove the need for a costly initial
design, introduce a time-bounded intensification mechanism, and discuss an approximate
version of standard GP models that reduces the computational overheads due to the
construction and use of models by orders of magnitude.

3.1 Interleaving Random Parameter Settings

Procedure 2 details how TB-SPO selects parameter settings to be considered next. It
iteratively interleaves settings selected by expected improvement and settings chosen
uniformly at random. Due to this interleaving of random settings in each iteration, we no
longer rely on a costly initialization using a Latin hypercube. Instead, we initialize the
model based on a single run using the algorithm’s default setting and can therefore start
the sequential optimization process much more quickly.

3.2 A Time-Bounded Intensification Mechanism

TB-SPO’s intensification mechanism iteratively performs runs of the target algorithm
until the time spent for doing so equals the combined overhead incurred by the model
construction and the search for promising parameter settings. This guarantees that at
least 50% of the total time spent is used for runs of the target algorithm. Obviously, this
percentage can be adjusted (in particular, that bound can be driven to 0% in applications
where the computational overhead is not of concern).

Procedure 3: Intensify(~Θnew, θinc,M, R, toverhead) in TB-SPO

Input : Sequence of parameter settings to evaluate, ~Θnew; incumbent parameter setting,
θinc; model,M; sequence of target algorithm runs, R; time bound, toverhead

Output: Sequence of target algorithm runs, R; incumbent parameter setting, θinc

for i = 1, . . . , length(~Θnew) do1

[θinc,R]← Compare(~Θnew[i], θinc, R)2
if time spent in this call to this procedure exceeds toverhead and i ≥ 2 then break3

return [R,θinc]4

We now describe our intensification mechanism in detail; Procedure 3 provides
pseudocode. Given a list of parameter settings, ~Θnew = (θ1,θ2, . . .), to be considered,
and a time bound for the current iteration, this mechanism iteratively compares each
parameter setting θ1,θ2, . . . to the current incumbent parameter setting, θinc. It stops
once the time bound is reached and at least two new parameter settings (i.e., at least
one randomly-sampled parameter setting) have been evaluated. Pseudocode for the
comparison procedure is given in Procedure 4; it is identical to the corresponding
subroutine in SPO+. When comparing a parameter setting θ to the current incumbent,
θinc, we incrementally increase its number of runs N(θ) until either its empirical cost
statistic exceeds the one of the incumbent (i.e., ĉ(θ) > ĉ(θinc)), or we have executed
at least as many runs for it as for the incumbent (i.e., N(θi) ≥ N(θinc)). In the former
case, we keep the same incumbent and perform as many additional algorithm runs for it
as we just performed for θi. In the latter case, we make θi our new incumbent.

These changes result in a new parameter optimization procedure we call TB-SPO.
Further differences between SPO+ and TB-SPO include that we use expected im-
provement criterion (EIC) E[Iexp(θ)] [see 11]. In our experiments, we did not observe
significant differences due to the choice of EIC but selected E[Iexp(θ)] because it is
theoretically better justified than the EIC used in SPO+. Also, while SPO+ revisits a
set of good previously-encountered parameter settings in each iteration to avoid missing
the optimal one, the random interleaved settings remove the need for this mechanism.

3.3 Using an Approximate Gaussian Process Model

Learning a GP model imposes prohibitive computational overhead in many parameter
optimization scenarios of interest. Inverting the n × n matrix [K + σ2I] in Equation
(2) takes time O(n3), where n is the number of training data points (i.e., the number of
target algorithm runs performed). This inversion has to be done in each of h steps of the
kernel parameter optimization, leading to a computational complexity ofO(h ·n3). Once
the kernel parameters are optimized and the inverse has been computed, subsequent
predictions are relatively cheap, only requiring matrix-vector multiplications and thus
time O(n2). In our typical parameter optimization scenarios, h is typically around 50
and the number of target algorithm runs we can perform within the given time budget is
in the tenthousands; thus, standard GP models are clearly not feasible.

Various approximations exist to reduce the complexity of GP models [see, e.g., 15].
Here, we use the projected process (PP) approximation. We only give the final equations
for predictive mean and variance [for a derivation, see 16]. The PP approximation to GPs
uses a subset of p of the n training data points, the so-called active set. Let v be a vector
holding the indices of these p data points. Let k(·, ·) denote the GP covariance function

Procedure 4: Compare(θ, θinc, R)
Recall that N(θ) denotes the number of algorithm runs which have been performed for θ.
The maximal number of runs to perform with a parameter setting, maxR, is a parameter; in
all our experiments, we set it to 2 000.

Input : Challenger parameter setting, θ; incumbent parameter setting, θinc; sequence of
target algorithm runs, R

Output: Sequence of target algorithm runs, R; incumbent parameter setting, θinc

r ← 1; numBonus← 11
R← ExecuteRuns(R, θ, 1)2
if N(θ) > N(θinc) then3

R← ExecuteRuns(R, θinc, 1)4
numBonus← 05

while true do6
if ĉ(θ) > ĉ(θinc) then7

// ===== Reject challenger, perform bonus runs for θinc

R← ExecuteRuns(R, θinc, min(numBonus,maxR−N(θinc))); break8

if N(θ) ≥ N(θinc) then9

// ===== Challenger becomes incumbent
θinc ← θ; break10

r ← min(2r,N(θinc)−N(θ))11
R← ExecuteRuns(R, θ, r)12
numBonus← numBonus +r13

return [R,θinc]14

and let Kpp denote the p by p matrix with Kpp(i, j) = k(θv(i),θv(j)). Similarly, let
Kpn denote the p by n matrix withKpn(i, j) = k(θv(i),θj); finally, letKnp denote
the transpose ofKpn. We then have

p(on+1|θn+1,θ1:n, o1:n) = N (on+1|µn+1,Varn+1),

where

µn+1 = k∗
T · (σ2Kpp +Kpn ·Knp)−1 ·Kpn · o1:n

Varn+1 = k∗∗ − k∗T ·K−1
pp · k∗ + σ2k∗

T · (σ2Kpp +Kpn ·Knp)−1 · k∗,

and k∗ and k∗∗ are defined as in Section 2.2.
These equations assume a kernel with fixed parameters. We optimize the kernel

parameters using a set of p data points randomly sampled without repetitions from the n
input data points. We then sample an independent set of p data points for the subsequent
PP approximation; in both cases, if p > n, we use n data points.

This approximation leads to a substantial improvement in computational complexity.
The kernel parameter optimization based on p data points takes timeO(h·p3). In addition,
there is a one-time cost of O(p2 · n) for the PP equations. Thus, the complexity for
fitting the approximate GP model is O([h · p+ n] · p2). The complexity for predictions
with this PP approximation is O(p) for the mean and O(p2) for the variance of the
predictive distribution [16]. Throughout, we use p = 300. As mentioned above, n is
often in the tenthousands, and h is typically around 50. Thus, in our typical scenarios,

it is dramatically faster to construct a PP model than a standard GP model (which is
O(h · n3)).

To use the PP approximation in our SMBO framework, we simply change the
function FitModel and the use of models inside Function SelectNewParameterSettings,
resulting in a new procedure we call TB-SPO(PP).

4 Experimental Evaluation
In this section, we empirically study the effects of removing the initial design and of
time-bounding the intensification mechanism; the quality of our improved models; and
the performance of SMBO with these models. First, we describe our experimental setup.

4.1 Experimental Setup

We empirically evaluated our parameter optimization procedures using a set of seven
different scenarios. These scenarios are concerned with the optimization of SAPS [14],
a high-performance dynamic local search algorithm for the propositional satisfiability
problem (SAT). SAPS is a good test case for parameter optimization since it is a promi-
nent algorithm that shows state-of-the-art performance for certain types of SAT instances
and has been used prominently to evaluate automated parameter optimization procedures
[13, 11, 2].

We used the standard UBCSAT implementation [18] of SAPS and considered the
same four continuous parameters and the same region of interest as in previous work [11].
In order to allow for a direct comparison with that work, we used the same scenario
SAPS-QWH used there. We also used six new scenarios, concerned with the optimization
of SAPS for three SAT-encoded instances of each of the quasigroup completion problem
(QCP) and the graph-colouring problem (for small-world graphs, SWGCP). For both
QCP and SWGCP, these three instances were selected from previously-studied instance
distributions [12], as the 50%, 75%, and 95% quantiles of hardness for SAPS, allowing
us to assess scaling behaviour with instance hardness.

We used two different optimization objectives. For SAPS-QWH, to be consistent with
past work, we aimed to minimize the median number of SAPS search steps required to
solve the instance. For the other scenarios, we aimed to minimize mean runtime. In order
to penalize timeouts at a cutoff time of κmax = 5 seconds, we defined the penalized
average runtime [PAR, see 12] of a set of runs to be the mean runtime over those runs,
where unsuccessful runs are counted as a · κmax with penalization constant a = 10.

We measured the performance of a parameter optimization run given a time budget t
by evaluating its incumbent parameter setting at time t, the setting that would be returned
if the procedure was to be terminated at time t. In particular, to approximate the true cost
of a proposed parameter setting, θ, in an offline evaluation stage, we performed 1 000
test runs of θ and used their empirical cost (for SAPS-QWH: median runlength; for the
other scenarios: PAR) as our measure of test performance, ptest,t.

4.2 Experimental Evaluation of Comparison Mechanism

First, we compared the previous state-of-the-art SMBO method, SPO+, to our new
method, TB-SPO. We performed 25 runs of each parameter optimization procedure for
each scenario and evaluated test performances ptest,t for various time budgets, t. For
fairness of comparison, we used the same LHD for SPO+ that we used in our previous
work [11] for scenario SAPS-QWH (500 points and 2 repetitions each). Table 1 shows the

10
1

10
2

10
3

10
4

10
5

CPU time t spent for configuration [s]

p
e

rf
o

rm
a

n
c

e
 p

t

SPO+

TB−SPO (w/ LHD)

TB−SPO

(a) Performance over time
SPO+ TB−SPO (w/ LHD) TB−SPO

0.95

1

1.05

1.1

1.15

x 10
4

p
e

rf
o

rm
a

n
c
e

 p
1
8
0
0

(b) End result after one hour, p3600

Fig. 3. Comparison of SPO+ and TB-SPO. We carried out 25 runs of each procedure and show
performance pt (median number of SAPS search steps using the procedure’s incumbent parameter
setting). ‘TB-SPO(w/ LHD)’ denotes a version of TB-SPO that uses the same LHD as the SPO+

variant shown (500 · 2 data points). Subplot (a): pt as a function of the time, t, the parameter
optimization procedure is allowed (mean over 25 runs). Subplot (b): box plot of performance
values p3600 achieved in the 25 runs.

Scenario SPO+ TB-SPO RANDOM∗ pval1 pval2
SAPS-QCP-MED [·10−2] 4.50± 0.31 4.32± 0.21 4.23 ± 0.15 4 · 10−3 0.17

SAPS-QCP-Q075 3.77± 9.72 0.19 ± 0.02 0.19 ± 0.01 2 · 10−6 0.78

SAPS-QCP-Q095 49.91± 0.00 2.20 ± 1.17 2.64± 1.24 1 · 10−10 0.12

SAPS-QWH [·103] 10.7± 0.76 10.1± 0.58 9.88 ± 0.41 6 · 10−3 0.14

SAPS-SWGCP-MED 49.95± 0.00 0.18± 0.03 0.17 ± 0.02 1 · 10−10 0.37

SAPS-SWGCP-Q075 50± 0 0.24± 0.04 0.22 ± 0.03 1 · 10−10 0.08

SAPS-SWGCP-Q095 50± 0 0.25 ± 0.05 0.28± 0.10 1 · 10−10 0.89

Table 1. Performance comparison of SPO+ (based on a LHD with 500 data points and 2 repeti-
tions), TB-SPO, and RANDOM∗. We performed 25 runs of each procedure and computed test
performance ptest,t (for SAPS-QWH: median number of SAPS search steps; for the other scenarios:
SAPS penalized average runtime) of its incumbents at time t = 1 800s (3 600s for SAPS-QWH).
We give mean± standard deviation across the 25 runs, with boldface indicating the best procedure
for each scenario. (Note that the two entries 50± 0 reflect the worst possible result: all test runs
timed out after κmax = 5s and were thus scored as 10 · 5s = 50s.) Column pval1 gives p-values
for a Mann Whitney U test between the performance of SPO+ and TB-SPO; pval2 gives these
values for comparing TB-SPO and RANDOM∗.

result of this comparison: TB-SPO performed substantially better than SPO+. Figure
3 sheds some light on this result, showing that the evaluation of SPO+’s initial LHD
already required about 100 seconds (of the total time budget of 3 600 seconds) for the
easiest problem instance. We also tested a TB-SPO variant using the same initial LHD
as SPO+; at the end of the time budget, this variant performed significantly better than
SPO+ and not significantly worse than the regular version of TB-SPO. For QCP-q095
and all three SWGCP instances (figures not shown), the LHD took the full time budget
of 3 600 seconds and hence SPO+ did not improve over the default at all. Overall, we
conclude that the removal of the initial LHD phase helped SPO to find good parameter
settings quickly, and that the time-bounded intensification mechanism led to significant
performance improvements for larger time budgets.

Interestingly, our intensification criterion did not only improve SPO, it also trans-
formed pure random search into a competitive parameter optimization procedure. Specif-

ically, we studied a simple procedure—dubbed RANDOM∗—that samples the list of new
promising parameter settings, ~Θnew, uniformly at random from the region of interest
but still applies our intensification mechanism. As we show in Table 1, RANDOM∗ never
performed statistically-significantly better or worse than TB-SPO. Thus, we conclude
that the GP model used in TB-SPO does not justify its (conceptual and computational)
complexity in this setting. In the next section, we will study whether this conclusion still
holds when we use approximate GP models instead.

4.3 Experimental Evaluation of Model Performance

Next, we used our seven parameter optimization scenarios to compare the quality of the
GP model used in all SPO variants so far, and the PP approximation to GP models. As
training data for each model, we employed 1 001 data points: single runtimes of SAPS
for its default and for 1 000 randomly-sampled parameter settings. Some of these runs
timed out after κmax = 5 seconds; according to our penalized average runtime (PAR)
criterion with penalty constant 10, we counted these as 50 seconds, learning models that
directly predict PAR.

Since the main purpose of models in SMBO is to propose good parameter settings to
be evaluated, we are mostly interested in their ability to accurately predict the perfor-
mance of such good settings (as opposed to accurate predictions throughout the entire
space). Thus, for each parameter optimization scenario, we employed a test set of 100
high-quality parameter settings, determined as follows. We executed 25 runs of SPO+

and kept track of the set of parameter settings it ever labelled as incumbents during its
optimization process. We then selected 100 of these settings uniformly at random.

We used this set of good parameter settings (unknown to the learning mechanisms)
to evaluate three different performance measures. The quality of predictive ranks is the
Spearman correlation coefficient between the true performance of our 100 test param-
eter settings and their predicted mean performance. The EIC quality is the Spearman
correlation between the true performance of test settings and the expected improvement
criterion (EIC), computed based on model predictions. Note that EIC depends both on
the predictive mean and the predictive uncertainty; we chose this since the primary use
of models in SMBO lies in selecting promising parameter settings based on their EIC.
Finally, the root mean squared error (RMSE) is the square root of the mean difference
between predicted and true performance.

In Figure 4, we report these three measures of predictive quality for both the PP
model and the noise-free GP model used in SPO, and for each of our seven parameter
optimization scenarios. We also report the time required to construct the models. In
this comparison, the PP model performed better with respect to almost all measures of
model quality for all parameter optimization scenarios. It also took about 1.5 orders of
magnitude less time to construct than the noise-free GP model. One may wonder how
the PP model (an approximate GP model) can perform better than the full (noise-free)
GP model. This is due to the fact that the latter clamps the observation noise to zero,
asserting that the sometimes quite noisy empirical cost statistics are perfect. If we were
to use a standard (noisy) GP model, we would expect it to perform somewhat better than
the PP model. However, as discussed in Section 3.3, we cannot afford such a model in
our sequential optimization procedure.

PP NF
−0.2

0

0.2

0.4

0.6

0.8

QCP−med
PP NF

0.2

0.4

0.6

QCP−q075
PP NF

0

0.2

0.4

0.6

0.8

QCP−q095
PP NF

0

0.2

0.4

0.6

0.8

QWH
PP NF

0

0.2

0.4

SWGCP−med
PP NF

−0.2

0

0.2

0.4

0.6

SWGCP−q075
PP NF

−0.2

0

0.2

0.4

0.6

SWGCP−q095

(a) Quality of predictive ranks (high is good, 1 is optimal)

PP NF

0.2

0.3

0.4

0.5

0.6

QCP−med
PP NF

0.5

0.6

0.7

0.8

QCP−q075
PP NF

0.5

0.6

0.7

0.8

QCP−q095
PP NF

0.4

0.6

0.8

QWH
PP NF

0

0.2

0.4

0.6

0.8

SWGCP−med
PP NF

−0.2

0

0.2

0.4

0.6

SWGCP−q075
PP NF

−0.2

0

0.2

0.4

0.6

SWGCP−q095

(b) EIC quality (high is good, 1 is optimal)

PP NF

0.15

0.2

0.25

0.3

QCP−med
PP NF

0.2

0.3

0.4

QCP−q075
PP NF

0.4

0.5

0.6

0.7

QCP−q095
PP NF

0.2

0.3

0.4

QWH
PP NF

0.6

0.8

1

1.2

SWGCP−med
PP NF

0.6

0.8

1

1.2

SWGCP−q075
PP NF

0.6

0.8

1

SWGCP−q095

(c) Root mean squared error (RMSE; low is good, 0 is optimal)

PP NF
0.5

1

1.5

2

QCP−med
PP NF

0.5

1

1.5

2

QCP−q075
PP NF

0.5

1

1.5

2

QCP−q095
PP NF

0.5

1

1.5

2

QWH
PP NF

0.5

1

1.5

2

SWGCP−med
PP NF

0.5

1

1.5

2

SWGCP−q075
PP NF

0.5

1

1.5

2

SWGCP−q095

(d) Log10 of CPU time (in seconds)
Fig. 4. Comparison of models. We performed 25 runs for each model with different training but
identical test data and show box plots for the respective quantities across the 25 runs. In each plot,
“PP” denotes the projected process approximation of standard GP models and “NF” denotes the
noise-free GP model.

We also identified an important failure mode of SPO’s noise-free GP model for
sequentially-gathered training data. This failure mode is due to the fact that SPO has
to fit its training data perfectly instead of realizing that it is corrupted by noise—as
a standard (noisy) GP or the PP approximation would. It arises when two parameter
settings, θ1 and θ2, are explored that are very close in parameter space but—due to the
randomness in the algorithm—have very different empirical cost statistics ĉ(θ1) and
ĉ(θ2), even though their true costs may be very similar. The noise-free GP model—fitted
on the empirical cost statistics—is forced to interpolate the two data points exactly and
thus has to use very small length scales (the λ’s in Equation 1). Such small length scales
cause most data points to be considered “far away” from all training data points, meaning

Scenario RANDOM∗ TB-SPO TB-SPO(PP) FOCUSEDILS Significantly-different pairs
SAPS-QCP-MED [·10−2] 4.23± 0.15 4.32± 0.21 4.13 ± 0.14 5.12± 0.41 R/P, R/F, S/P, S/F, P/F

SAPS-QCP-Q075 0.19± 0.01 0.19± 0.02 0.18 ± 0.01 0.24± 0.02 R/P, R/F, S/P, S/F, P/F
SAPS-QCP-Q095 2.64± 1.24 2.20± 1.17 1.44 ± 0.53 2.99± 3.20 R/P, S/P, P/F
SAPS-QWH [·103] 9.88± 0.41 10.1± 0.58 9.42 ± 0.32 10.6± 0.49 R/P, R/F, S/P, S/F, P/F
SAPS-SWGCP-MED 0.17± 0.02 0.18± 0.03 0.16 ± 0.02 0.27± 0.12 R/P, R/F, S/P, S/F, P/F
SAPS-SWGCP-Q075 0.22± 0.03 0.24± 0.04 0.21 ± 0.02 0.35± 0.08 R/F, S/P, S/F, P/F
SAPS-SWGCP-Q095 0.28± 0.10 0.25± 0.05 0.23 ± 0.05 0.37± 0.16 R/F, S/P, S/F, P/F

Table 2. Quantitative comparison of parameter optimization procedures. We performed 25 runs
of each procedure and computed their test performance ptest,t (penalized average runtime, PAR,
over N = 1 000 test instances using the methods’ final incumbents θinc(t)) for a time budget of
t = 1800s. Here, we give mean ± standard deviation across the 25 runs. We performed pairwise
Mann Whitney U tests and list pairs of parameter optimization procedures with significantly-
different test performance; ‘R’, ‘S’, ‘P’, and ‘F’ denote RANDOM∗, TB-SPO, TB-SPO(PP), and
FOCUSEDILS, respectively. Figure 5 visualizes this data.

R S P F

0.04

0.045

0.05

0.055

QCPmed
R S P F

0.16

0.18

0.2

0.22

0.24

0.26

0.28

QCP−q075
R S P F

0

5

10

15

QCP−q095
R S P F

0.9

1

1.1

x 10
4

QWH
R S P F

0.2

0.4

0.6

SWGCP−med
R S P F

0.2

0.3

0.4

0.5

SWGCP−q075
R S P F

0.2

0.4

0.6

0.8

1

SWGCP−q095

Fig. 5. Box plot comparison of optimization procedures. “R” stands for RANDOM∗, “S” for TB-
SPO, “P” for TB-SPO(PP), and “F” for FocusedILS. We show box plots for the data presented in
Table 2; lower values are better.

that the predictions for these data points is simply the mean of the training data. This
effect occurred frequently in our experiments: after a dozen iterations, in most runs of
SPO variants using noise-free GP models, the model predicted the performance of all
(or almost all) test parameter settings to be the mean performance of the training data
points.

4.4 Final Experimental Evaluation

Finally, we experimentally compared our various parameter optimization procedures:
RANDOM∗, TB-SPO, TB-SPO(PP), and, for reference, FOCUSEDILS [13]. As be-
fore, we performed 25 runs for each procedure and scenario and evaluated their test
performances.

In Table 2 and Figure 5, we summarize test performance at the end of the time budget.
Figure 5 provides box plots, while Table 2 lists means and standard deviations across the
25 runs, as well as the result of pairwise significance tests. First, we note that RANDOM∗,
TB-SPO, and TB-SPO(PP) all yielded very competitive performance. In particular,
in all 7 optimization scenarios, all of them yielded better mean test performance than
FOCUSEDILS, and in 6 of these 7 the differences were statistically significant (in all
7 for TB-SPO(PP)). This is not entirely surprising, since FOCUSEDILS has been de-
veloped to optimize algorithms with many discrete parameters and is restricted to a
discretized subspace, while TB-SPO can search the whole continuous space. It is, how-
ever, noteworthy, since FOCUSEDILS has in the past shown state-of-the-art performance
for optimizing SAPS [13].

10
1

10
2

10
3

10
0

10
1

CPU time t spent for configuration [s]

p
e

rf
o

rm
a

n
c

e
 p

t

Random*

TB−SPO

TB−SPO(PP)

FocILS

(a) SAPS-SWGCP-Q075

10
1

10
2

10
3

10
1

CPU time t spent for configuration [s]

p
e

rf
o

rm
a

n
c

e
 p

t

Random*

TB−SPO

TB−SPO(PP)

FocILS

(b) SAPS-QCP-Q095
Fig. 6. Comparison of optimization procedures over time for two parameter optimization scenarios.
We performed 25 runs of the procedures and computed their test performance ptest,t at time steps
t = 10, 20, 40, . . . , 1280, 1800 seconds; we plot mean ptest,t across the 25 runs.

Here, we use exactly the same discretization and demonstrate that our new methods—
based on searching the whole continuous space—perform substantially better. Overall,
TB-SPO(PP) clearly found the best parameter settings. It yielded the best mean perfor-
mance in all scenarios and significantly outperformed TB-SPO in all 7 scenarios and
RANDOM∗ in 5 of the 7 scenarios. (For the remaining 2 scenarios, SAPS-SWGCP-Q075
and SAPS-SWGCP-Q095, TB-SPO(PP) only performed insignificantly better than RAN-
DOM∗; we attribute this to the relatively hard modelling tasks for those problems—see
the two rightmost columns of Figure 4).

In Figure 6, for two representative scenarios, we show mean test performance
as the time budget increases. Figure 6(a) shows that TB-SPO(PP) did not always
dominate all other methods for all time budgets. We observed a similar pattern in 3
other scenarios, but in those 3, TB-SPO(PP) started performing best after less than 100
seconds. Figure 6(b) shows performance for scenario SAPS-QCP-Q095, the scenario
with the hardest instance, which also resulted in the largest differences between the
parameter optimization procedures. For this scenario, TB-SPO(PP) yielded a more than
1.5-fold improvement over TB-SPO. It also found a solution matching the best found by
TB-SPO in roughly half the time.

5 Conclusions
In this paper, we improved sequential model-based techniques for optimizing algorithms
with continuous parameters on single problem instances. We paid special attention to the
issue of time, taking into account both the overhead incurred by the use of models and the
fact that the target algorithm’s runtime often varies considerably across different parame-
ter settings, especially if our objective is to minimize algorithm runtime. In particular,
we augmented the Sequential Parameter Optimization (SPO) framework to (1) avoid per-
forming a costly initial design and (2) introduce a time-bounded intensification strategy;
we dubbed the resulting time-bounded SPO version TB-SPO. We also (3) employed
an approximate version of Gaussian process (GP) models to reduce the computational
complexity of constructing and using models. Our experiments for optimizing a local
search algorithm for seven different SAT instances demonstrated that mechanisms (1)
and (2) substantially sped up SPO. The approximate GP model performed much better
than the previously-used noise-free GP model, while only imposing about 1/30 of the

overhead. Consequently, this model led to significant performance improvements of the
TB-SPO framework.

In future work, we plan to extend our techniques to include the optimization of
algorithms with categorical parameters, as well as optimization across multiple instances.
In order to further reduce the computational time required for parameter optimization,
we plan to develop approaches that actively select the cutoff time to be used for each run
of the target algorithm.

References
[1] Adenso-Diaz, B. and Laguna, M. (2006). Fine-tuning of algorithms using fractional experi-

mental design and local search. Operations Research, 54(1):99–114.
[2] Ansotegui, C., Sellmann, M., and Tierney, K. (2009). A gender-based genetic algorithm for

the automatic configuration of solvers. In Proc. of CP-09, pages 142–157.
[3] Audet, C. and Orban, D. (2006). Finding optimal algorithmic parameters using the mesh

adaptive direct search algorithm. SIAM Journal on Optimization, 17(3):642–664.
[4] Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strategies for the F-Race

algorithm: Sampling design and iterative refinement. In Proc. of MH-07, pages 108–122.
[5] Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary Computation: The New

Experimentalism. Natural Computing Series. Springer Verlag, Berlin.
[6] Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential parameter optimization.

In B. McKay et al, editor, Proc. of CEC-05, pages 773–780. IEEE Press.
[7] Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for

configuring metaheuristics. In Proc. of GECCO-02, pages 11–18.
[8] Coy, S. P., Golden, B. L., Runger, G. C., and Wasil, E. A. (2001). Using experimental design

to find effective parameter settings for heuristics. Journal of Heuristics, 7(1):77–97.
[9] Huang, D., Allen, T. T., Notz, W. I., and Zeng, N. (2006). Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimization,
34(3):441–466.

[10] Hutter, F., Bartz-Beielstein, T., Hoos, H. H., Leyton-Brown, K., and Murphy, K. P. (2009a).
Sequential model-based parameter optimisation: an experimental investigation of automated
and interactive approaches. In Empirical Methods for the Analysis of Optimization Algorithms.
Springer Verlag. To appear.

[11] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Murphy, K. P. (2009b). An experimental
investigation of model-based parameter optimisation: SPO and beyond. In Proc. of GECCO-09,
pages 271–278.

[12] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009c). ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–306.

[13] Hutter, F., Hoos, H. H., and Stützle, T. (2007). Automatic algorithm configuration based on
local search. In Proc. of AAAI-07, pages 1152–1157.

[14] Hutter, F., Tompkins, D. A. D., and Hoos, H. H. (2002). Scaling and probabilistic smoothing:
Efficient dynamic local search for SAT. In Proc. of CP-02, pages 233–248.

[15] Quinonero-Candela, J., Rasmussen, C. E., and Williams, C. K. (2007). Approximation
methods for gaussian process regression. In Large-Scale Kernel Machines, Neural Information
Processing, pages 203–223. MIT Press, Cambridge, MA, USA.

[16] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
The MIT Press.

[17] Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer
Experiments. Springer Verlag, New York.

[18] Tompkins, D. A. D. and Hoos, H. H. (2004). UBCSAT: An implementation and experi-
mentation environment for SLS algorithms for SAT & MAX-SAT. In Proc. of SAT-04, pages
306–320.

