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procedure SAPSE, «, p, wp, Psmooth, SAPSthresn)
1 Preface input:

: ; ; : ; propositional formulaF’, scaling factor,
The first part of this paper is essentially a reprint (70 ctop, random walk probabilityop,

of the solver description from the 2005 competi-  smoothing probabilityP. oot
tion, as the software submitted this year is identi- >4 eSO AL Smrean
cal to the 2005 software. We entered the SAPS variable assignment
variant implemented in the UBQSAT software pack- for i == 1] A| do (i) := RandSelegt( T, 1})
age [7], the source code for which is freely available for j :=1.|CLP|doclp(j) =1
. ; while (F is unsatisfied unded) do
athtt p: //vwvw. satlib.org/ gbcsat . . curScore = Eval(F, A. CLP)
The only difference to 2005 is that we submit  bestScore:=co

: : FPn BestVars: =<
two versions of SAPS’ one with the Orlgmal default for each i s.t. variablei appears in an unsatisfied clawke

parameters [4], and one with a new set of tuned pa- score := Eval(F,Flip(A, i), CLP)
rameters. These parameters have been found using " *607¢ < bestScore then

an automatic approach based on local search in pa- BestVars = {i}

rameter space [3]. Section 3 gives a brief overview 8] se “hesSee e

of this tuning approach and shows very promising end if

performance of the automatically tuned parameters. ﬁ”fb?s’t Score — curScore) < SAPSunresn then
2 SAPSand Variants AR e

The SAPS algorithm is a Dynamic Local Search elsewnh probability wp do

(DLS) algorithm conceptually closely related to the ’jl:_::ﬁg?ie':;ﬁ{l--V"})
Exponentiated Sub-Gradient (ESG) algorithm de- otherwise

veloped by Schuurmans, Southey and Holte [5]. for j;*(‘j?)s_-:‘-(fl%‘;egiz“”sa“s“‘ed unded do
When introducing SAPS, our major contributions endfor

were a reduction in the algorithmic complexity as W”?Off;?‘?j"@li'iréf;nlragh do

compared to the ESG algorithm and a new perspec- elp(j) = clp(j) + (1 — p) x lp
tive on how the two algorithms were behaving. The end for

SAPS algorithm is described in detail in our pa- ende\,r;ﬂﬁv'm

per [4] and Figure 1 contains a pseudo-code repre- endif

sentation that accurately reflects how the SAPS al—?;(f,mf)

gorithm has been implemented in practice. end procedure SAPS

Similar to most DLS algorithms, SAPS aSSIgnl§igure 1: The SAPS algorithm. For each claugén
a claus_e penaltylp to each c_Iause, and the search ihere is a clause penalgyp(j) in CLP, andclp is
evaluation function of SAPS is the sum of the clausge mean of all clause penalties. Ev@lA, CLP) is the
penalties of unsatisfied clauses. The core seakgtlm of allclp(j) whereclausej is unsatisfied inF by
procedure is a greedy descent without sideways In practice, Eval(...) values are cached and updated
steps. Whenever a local minimum occurs (no stefier each flip. Flipd, ) returns the variable assignment
improvement in the evaluation function greater that with variablei flipped.
SAPS;presn IS possible) a random walk step oc-
curs with probabilitywp. Otherwise, acaling step

occurs, where the penalties for unsatisfied clausés cip)'w itﬁfterr E‘ zﬁﬁ“;g step, asrmln othr|nng tsrt](leﬁ
are multiplied by the scaling facter (i.e. clp’ := oceurs Probabliysmooth.- a smoothing



SAT COMPETITION 2007 -SOLVER DESCRIPTION

Parameter Default value Values considered for tuning Tuned value for random instancels
e} 1.3 1.01, 1.066, 1.126, 1.189, 1.256, 1.326, 1.4 1.126
p 0.8 0,0.17,0.333, 0.5, 0.666, 0.83, 1 0.666
Psmooth 0.05 0, 0.033, 0.066, 0.1, 0.133, 0.166, 0.2 0.033
wp 0.01 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 0.06
SAPSihresh -0.1 -0.1 -0.1

Table 1: SAPS parameters, and their default and tuned values. We considsetl wlues for each of the four
tuning parameters, equally spaced on a grid with a manual chosenampiwer bounds (only for the multiplicative
parametery, we used a logarithmic grid).

space, computing the objective function as the me-

, iMeoUt}™ o™ 100 train inst, SATO4 o - - . . ) X
E * 50 test iqst, SATO04
dian runtime of SAPS for solving a fixed number of
5 1000 + 180 test inst, SATO5 . : .
5 o0 o AL 9 N instances (we uself = 100).
= « o S Ee ] We considered the four SAPS parametets (
= 10 Al o " . .. .
g ) - 80;;:‘0% % ® py wp, Psmoorn) fOr tuning, fixing the fifth one,
& - OO*,b Rae . SAPSpresn, (but tuning SAPS,p,,csn, Would also
Oy 2% * be interesting). In previous research [4, 6, 2], we
g ooye Ao noticed that optimal parameter values can vary a lot
<0.01 ®O0 x x . )
S BOoL G139 10 smeout and so we allowed a wide range of parameter values;
) CPU time(s), default parameters we summarise our choices in Table 1.
Figure 2:Perf_or_mance of tuned SAPS parameters vs. its \We tuned SAPS on 100 random instances from
defaults on training and test data. the SAT04 competition and tested on the remaining

50 random SATO04 instances, as well as on the 180

step, all penalties are adjusted according to the mefilable random instances from the SATOS compe-

penalty valueclp and the smoothing factgs (i.e. tition. Figure 2 shows the results. Thus, we expect
clp = clp+ (1 — p) - clp). the tuned version of SAPS to outperform the de-

Along with the SAPS algorithm, we also de_fault version quite clearly on random instances. We

veloped a reactive variant (RSAPS) [4] that reaS2NNOt Say anything about its performance on other
tively changes the smoothing parameteduring types of instances, but, using ParamiLS, it would

the search process whenever search stagnatio?§sVery €asy to tune SAPS for good performance

detected, using the same adaptive mechanism i@ more general distribution of instances as well

Adaptive Novelty [1]. More recently we have de_(possibly loosing peak performance for specialised
veloped ade-randomised variant of SAPS called NStances).
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