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1 Preface
The first part of this paper is essentially a reprint
of the solver description from the 2005 competi-
tion, as the software submitted this year is identi-
cal to the 2005 software. We entered the SAPS
variant implemented in the UBCSAT software pack-
age [7], the source code for which is freely available
athttp://www.satlib.org/ubcsat.

The only difference to 2005 is that we submit
two versions of SAPS, one with the original default
parameters [4], and one with a new set of tuned pa-
rameters. These parameters have been found using
an automatic approach based on local search in pa-
rameter space [3]. Section 3 gives a brief overview
of this tuning approach and shows very promising
performance of the automatically tuned parameters.

2 SAPS and Variants
The SAPS algorithm is a Dynamic Local Search
(DLS) algorithm conceptually closely related to the
Exponentiated Sub-Gradient (ESG) algorithm de-
veloped by Schuurmans, Southey and Holte [5].
When introducing SAPS, our major contributions
were a reduction in the algorithmic complexity as
compared to the ESG algorithm and a new perspec-
tive on how the two algorithms were behaving. The
SAPS algorithm is described in detail in our pa-
per [4] and Figure 1 contains a pseudo-code repre-
sentation that accurately reflects how the SAPS al-
gorithm has been implemented in practice.

Similar to most DLS algorithms, SAPS assigns
a clause penaltyclp to each clause, and the search
evaluation function of SAPS is the sum of the clause
penalties of unsatisfied clauses. The core search
procedure is a greedy descent without sideways
steps. Whenever a local minimum occurs (no step
improvement in the evaluation function greater than
SAPSthresh is possible) a random walk step oc-
curs with probabilitywp. Otherwise, ascaling step
occurs, where the penalties for unsatisfied clauses
are multiplied by the scaling factorα (i.e. clp′ :=

procedure SAPS(F , α, ρ, wp, Psmooth, SAPSthresh)
input:

propositional formulaF , scaling factorα,
smoothing factorρ, random walk probabilitywp,
smoothing probabilityPsmooth,
SAPS thresholdSAPSthresh

output:
variable assignmentA

for i := 1..|A| do a(i) := RandSelect({⊤,⊥})
for j := 1..|CLP | do clp(j) := 1
while (F is unsatisfied underA) do

curScore := Eval(F, A, CLP )
bestScore := ∞
BestV ars := ∅

for each i s.t.variablei appears in an unsatisfied clausedo
score := Eval(F,Flip(A, i), CLP )
if score < bestScore then

bestScore := score
BestV ars := {i}

else if score = bestScore then
BestV ars := BestV ars ∪ {i}

end if
end for
if (bestScore − curScore) < SAPSthresh then

k := RandSelect(BestV ars)
A := Flip(A, k)

else
with probability wp do

k := RandSelect({1..|A|})
A := Flip(A, k)

otherwise
for each j s.t.clausej is unsatisfied underA do

clp(j) := clp(j) × α
end for
with probability Psmooth do

for j := 1..|CLP | do
clp(j) := clp(j) + (1 − ρ) × clp

end for
end with

end with
end if

end while
return (A)

end procedure SAPS

Figure 1: The SAPS algorithm. For each clausej in
F there is a clause penaltyclp(j) in CLP , and clp is
the mean of all clause penalties. Eval(F, A, CLP ) is the
sum of all clp(j) whereclausej is unsatisfied inF by
A. In practice, Eval(...) values are cached and updated
after each flip. Flip(A, i) returns the variable assignment
A with variablei flipped.

α · clp). After a scaling step, asmoothing step
occurs with probabilityPsmooth. In a smoothing
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Parameter Default value Values considered for tuning Tuned value for random instances
α 1.3 1.01, 1.066, 1.126, 1.189, 1.256, 1.326, 1.4 1.126
ρ 0.8 0, 0.17, 0.333, 0.5, 0.666, 0.83, 1 0.666

Psmooth 0.05 0, 0.033, 0.066, 0.1, 0.133, 0.166, 0.2 0.033
wp 0.01 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 0.06

SAPSthresh -0.1 -0.1 -0.1

Table 1: SAPS parameters, and their default and tuned values. We considered seven values for each of the four
tuning parameters, equally spaced on a grid with a manual chosen upperand lower bounds (only for the multiplicative
parameterα, we used a logarithmic grid).
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Figure 2:Performance of tuned SAPS parameters vs. its
defaults on training and test data.

step, all penalties are adjusted according to the mean
penalty valueclp and the smoothing factorρ (i.e.
clp′ := clp + (1 − ρ) · clp).

Along with the SAPS algorithm, we also de-
veloped a reactive variant (RSAPS) [4] that reac-
tively changes the smoothing parameterρ during
the search process whenever search stagnation is
detected, using the same adaptive mechanism as
Adaptive Novelty+ [1]. More recently we have de-
veloped ade-randomised variant of SAPS called
SAPS/NR [8], which eliminates all sources of ran-
dom decisions throughout the search (breaking ties
deterministically, performing periodic smoothing,
and no random walk steps) and which relies upon
the initial random variable assignment as the only
source of randomness.

In our experiments, we have found that SAPS,
RSAPS and SAPS/NR are amongst the state-of-the-
art SLS SAT solvers, and each typically performs
better than ESG, and the best WalkSAT variantse.g.,
Novelty+ [4]. We have also conducted experiments
that show SAPS is similarly effective on MAX-SAT
problem instances [6].

3 Automated Parameter Tuning
We are currently performing research in automatic
methods for parameter adjustment (for both local
search and tree search algorithms) and applied one
of our methods for tuning SAPS. This method,
called ParamILS [3], views parameter tuning as an
optimisation problem. In a nutshell, it performs
an iterated local search in parameter configuration

space, computing the objective function as the me-
dian runtime of SAPS for solving a fixed number of
N instances (we usedN = 100).

We considered the four SAPS parameters (α,
ρ, wp, Psmooth) for tuning, fixing the fifth one,
SAPSthresh (but tuningSAPSthresh would also
be interesting). In previous research [4, 6, 2], we
noticed that optimal parameter values can vary a lot
and so we allowed a wide range of parameter values;
we summarise our choices in Table 1.

We tuned SAPS on 100 random instances from
the SAT04 competition and tested on the remaining
50 random SAT04 instances, as well as on the 180
available random instances from the SAT05 compe-
tition. Figure 2 shows the results. Thus, we expect
the tuned version of SAPS to outperform the de-
fault version quite clearly on random instances. We
cannot say anything about its performance on other
types of instances, but, using ParamILS, it would
be very easy to tune SAPS for good performance
on a more general distribution of instances as well
(possibly loosing peak performance for specialised
instances).
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