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Abstract—Parameterized heuristics abound in computer aided
design and verification, and manual tuning of the respective
parameters is difficult and time-consuming. Very recent results
from the artificial intelligence (AI) community suggest that this
tuning process can be automated, and that doing so can lead to
significant performance improvements; furthermore, automated
parameter optimization can provide valuable guidance during
the development of heuristic algorithms. In this paper, we
study how such an AI approach can improve a state-of-the-
art SAT solver for large, real-world bounded model-checking
and software verification instances. The resulting, automatically-
derived parameter settings yielded runtimes on average 4.5 times
faster on bounded model checking instances and 500 times
faster on software verification problems than extensive hand-
tuning of the decision procedure. Furthermore, the availability
of automatic tuning influenced the design of the solver, and
the automatically-derived parameter settings provided a deeper
insight into the properties of problem instances.

Index Terms—Decision Procedures, Boolean Satisfiability,
Search Parameter Optimization

I. INTRODUCTION

The problems encountered in automated formal verification

are typically hard. As with other computationally difficult

problems, the key to practical solutions lies in the use of

heuristic techniques. In the context of verification, decision

procedures, which might be embodied as a BDD [1] package, a

Boolean satisfiability (SAT) solver (e.g., [2]), or an automated

theorem prover based on the Nelson-Oppen framework [3], all

make use of various heuristics that have a crucial impact on

their performance.

A high-performance decision procedure typically uses mul-

tiple heuristics that interact in complex ways. Some examples

from the SAT-solving world include decision variable and

phase selection, clause deletion, next watched literal selection,

and initial variable ordering heuristics (e.g., [4], [5], [6]).

The behavior and performance of these heuristics is typically

controlled by parameters, and the complex effects and interac-

tions between these parameters render their tuning extremely

challenging.

During the typical development process of a heuristic solver,

certain heuristic choices and parameter settings are tested in-

crementally, typically using a modest collection of benchmark

instances that are of particular interest to the developer. Many

choices and parameter settings thus made are “locked in”

during early stages of the process, and typically, only few

parameters are exposed to the users of the finished solver. In

many cases, these users never change the default settings of

the exposed parameters or manually tune them in a manner

similar to that used earlier by the developer.

Not surprisingly, this manual configuration and tuning ap-

proach typically fails to realize the full performance potential

of a heuristic solver. In this paper, we present an alternative

approach based on automated parameter optimization methods

and demonstrate its benefits, which include substantial perfor-

mance improvements, valuable guidance to the algorithm de-

signer, and new insights into specific types of (SAT-encoded)

verification problems.

Specifically, we explain how PARAMILS, a recent param-

eter optimization tool developed by Hutter et al. [7], was

used during the development of SPEAR, a high-performance

modular arithmetic decision procedure and SAT solver, which

was developed in support of the CALYSTO static checker [8].

Although the performance of an early, manually-tuned version

of SPEAR was comparable to that of a state-of-the-art SAT

solver (MiniSAT 2.0 [9]), the use of PARAMILS ultimately

lead to speedups between a factor of 4.5 and a factor of

500 due to the optimization of the search parameters. The

use of PARAMILS also influenced the design of SPEAR and

gave us some important insights about differences between

(SAT-encoded) hardware and software verification problems;

for example, we found that the software verification instances

generated by the CALYSTO static checker required more

aggressive use of SPEAR’s restart mechanism than the bounded

model checking hardware verification benchmarks we studied.

While the results of our case study are interesting in their

own right, it should be noted that our overall approach and

the specific parameter optimization tool used in this study are

very general and can be applied to any parameterized heuristic

algorithm; the performance criterion that is automatically

optimized can be runtime, precision, latency, or any other

computable scalar metric.

II. RELATED WORK

There are almost no publications on automated parameter

optimization for decision procedures for formal verification.

Seshia [10] explored using support vector machine (SVM)

classification to choose between two encodings of difference

logic into Boolean SAT. The learned classifier was able

to choose the better encoding in most instances he tested,

resulting in a hybrid encoding that mostly dominated the two

pure encodings. The only other work we are aware of is

unpublished, ad hoc work in industry.



There is, however, a fair amount of previous work on opti-

mizing SAT solvers for particular applications. For example,

Shtrichman [11] considered the influence of variable and phase

decision heuristics (especially static ordering), restriction of

the set of variables for case splitting, and symmetric replication

of conflict clauses on solving bounded model checking (BMC)

problems. He evaluated seven strategies on the Grasp SAT

solver, and found that static ordering does perform fairly well,

although no parameter combination was a clear winner. Later,

Shacham and Zarpas [12] showed that Shtrichman’s conclu-

sions do not apply to zChaff’s less greedy VSIDS heuristic on

their set of benchmarks, claiming that Shtrichman’s conclu-

sions were either benchmark- or engine-dependent. Shacham

and Zarpas evaluated four different decision strategies on IBM

BMC instances, and found that static ordering performs worse

than VSIDS-based strategies. Lu at al. [13] exploited signal

correlations to design a number of ATPG-specific techniques

for SAT solving. Their technique showed roughly an order of

magnitude improvement on a small set of ATPG benchmarks.

The automated parameter optimization tool used in our

study has been recently introduced by Hutter et al. [7];

however, that work was more focused on theoretical properties

of the algorithm and did not consider an application to a state-

of-the-art solver for real-world problems. That work and the

study presented here complement each other and also address

two different communities. Very broadly, automated parameter

optimization can be seen as as a stochastic optimization

problem that can be solved using a range of generic and

specific methods [14], [15], [16]. However, these are either

limited to algorithms with continuous parameters or algorithms

with a small number of discrete parameters.

III. ALGORITHM DEVELOPMENT AND MANUAL TUNING

The core of SPEAR is a DPLL-style [17] SAT solver,

but with several novelties. For example, SPEAR features an

elaborate clause prefetching mechanism that improves memory

locality. To improve the prediction rate of the prefetching

mechanism, Boolean constraint propagation (BCP) and con-

flict analysis have been redesigned to be more predictable.

SPEAR also features novel heuristics for decision making,

phase selection, clause deletion, and variable and clause

elimination. In addition, SPEAR has several enhancements for

software verification, such as support for modular arithmetic

constraints [18], incrementality to enable structural abstrac-

tion/refinement [8], and a technique for identifying context-

insensitive invariants to speed up solving multiple queries

that share common structure [19]. Given all of these features,

extensions, and heuristics, many components of SPEAR are

parameterized, including the choice of heuristics, as well

as enabling (or disabling) of various features: e.g., pure-

literal rule, randomization, clause deletion, and literal sorting

in freshly learned clauses. Thus, the optimization of these

parameters is a challenging task.

After the first version of SPEAR was written and its

correctness thoroughly tested, its developer, Domagoj Babić,

spent one week on manual performance optimization, which

involved: (i) optimization of the implementation, resulting in

a speedup by roughly a constant factor, with no effects on

the search parameters, and (ii) manual optimization of roughly

twenty search parameters, most of which were hard-coded and

scattered around the code at the time.

The manual parameter optimization was a slow and tedious

process done in the following manner: the SPEAR developer

collected several medium-sized benchmark instances which it

could solve in at most 1000 seconds and attempted to come up

with a parameter configuration that would result in a minimum

total runtime on this set. The benchmark set was very limited

and included several medium-sized BMC and some small soft-

ware verification (SWV) instances generated by the CALYSTO

static checker [8].1 Such a small set of test instances facilitates

fast development cycles and experimentation, but has many

disadvantages.

Quickly it became clear that implementation optimization

gave more consistent speedups than parameter optimization.

Even on such a small set of benchmarks, the variations due

to different parameter settings were huge. We even found one

case (Alloy analyzer [20] instance handshake.als.3) where the

difference of floating point rounding errors between Intel’s

non-standard 80-bit and IEEE 64-bit precision resulted in an

extremely large difference in the runtimes on the same pro-

cessor. The same instance was solved in 0.34 sec with 80-bit

precision and timed out after 6000 sec with 64-bit precision.

The difference in rounding initially caused minor differences

in variable activities, which are used to compute the dynamic

decision ordering. Those minor differences quickly diverged,

pushing the solver into two completely different parts of search

space. Since most parameters influence the decision heuristics

in some way, the solver might be equally sensitive to parameter

changes.2

Given the costly and tedious nature of the process, no further

manual parameter optimization was performed after finding a

configuration that seemed to work well on the chosen test set.

To assess the performance of this manually tuned version

of SPEAR, we ran it against MiniSAT 2.0 [9], the winner

of the industrial category of the 2005 SAT Competition and

of the 2006 SAT Race. In this experiment, we used two

instance sets introduced in detail later in Sec. V: bounded

model checking (BMC) and software verification (SWV). As

can be seen from the runtime correlation plots shown in

Figure 1, both solvers perform quite similarly for bounded

model checking and easy software verification instances. For

difficult software verification instances, however, MiniSAT

clearly performs better. This seems to be the effect of focusing

the manual tuning on a small number of easy instances.

For most decision procedures, the process of finding default

(or hard-coded) parameter settings resembles the manual tun-

ing described above. Furthermore, most users of these tools

1Small instances were selected because CALYSTO tends to occasionally
generate very hard instances that would not be solved within a reasonable
amount of time.

2This emphasizes the need to find parameter settings that lead to more
robust performance, with different random seeds, as well as across instances.
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(b) Software verification

Fig. 1. MiniSAT 2.0 vs. SPEAR using its original, manually tuned default parameter settings. (a) The two solvers perform comparably on bounded model
checking instances, with average runtimes of 298 seconds (MiniSAT) vs. 341 seconds (SPEAR) for the instances solved by both algorithms. (b) Performance
on easy and medium software verification instances is comparable, but MiniSAT scales better for harder instances. The average runtimes for instances solved
by both algorithms are 30 seconds (MiniSAT) and 787 seconds (SPEAR).

do not change these settings, and when they do, they typically

apply the same manual approach.

IV. PARAMETER OPTIMIZATION BY LOCAL SEARCH

The tool we chose to use for automatically optimizing

parameter settings in SPEAR has recently been developed in

the Artificial Intelligence community [7]; in the following, we

briefly introduce the underlying PARAMILS algorithm (further

details and some theoretical background can be found in the

paper by Hutter et al. [7]).

PARAMILS is motivated by the following manual parameter

tuning technique often used by algorithm developers:

• Start with some parameter configuration

• Iteratively, modify one algorithm parameter at a time,

keeping the modification if performance on a given

benchmark set improves and undoing it otherwise.

• Terminate when no single parameter modification yields

an improvement, or when the best configuration found so

far is considered “good enough”.

Notice that this is essentially a simple hill-climbing local

search process, and as such it will typically terminate in a

locally, but not globally optimal parameter configuration, in

which changing any single parameter value will not achieve

any performance improvement. However, since parameters of

heuristic algorithms are typically not independent, changing

two or more parameter values at the same time may still

improve performance.

The problem of local optima is ubiquitous in local search,

and many approaches have been developed to effectively

deal with them; one of these approaches is Iterated Lo-

cal Search (ILS) [21], [22], which provides the basis for

PARAMILS. ILS essentially alternates a subsidiary local

search procedure (such as simple hill-climbing) with a per-

turbation phase, which lets the search escape from a local

minimum. Additionally, an acceptance criterion is used to

decide whether to continue the search from the most recently

discovered local minimum or from some earlier local min-

imum. More precisely, starting from some initial parameter

configuration, PARAMILS first performs simple hill-climbing

search until a local minimum c is reached, and then it cycles

through the following phases:

1) apply perturbation (in the form of multiple random

parameter changes);

2) perform simple hill-climbing search until a new local

minimum c
′ is reached;

3) accept the better of the two configurations c and c
′ as

the starting point of the next cycle.

PARAMILS thus performs a biased random walk over lo-

cally optimal parameter configurations. To determine the better

of two configurations, it can use arbitrary scalar performance

metrics, including expected runtime, expected solution quality

(for optimization algorithms), or any other statistic on the

performance of the algorithm to be tuned when applied to

instances from a given benchmark set. This benchmark set is

called the training set, in contrast to the test sets we used later

for evaluating the final parameter configurations obtained from

PARAMILS (as is customary in the empirical evaluation of

machine learning algorithms, training and test sets are strictly

disjoint).

Clearly, the choice of the training set has important con-

sequences for the performance of PARAMILS. Ideally, a

homogenous training set would be chosen, i.e., one in which

the impact of parameter settings on the performance of the

algorithm to be tuned (here, SPEAR) is similar for all in-

stances in the set. In that case, it would be sufficient and

‘safe’ to evaluate and compare parameter configurations by

running the solver on a small number of instances. In practice,

however, ‘interesting’ instance sets may not be homogenous,



and therefore larger training sets may be required to achieve

a reasonably unbiased evaluation of parameter configurations.

BASICILS(N ) is a simple version of PARAMILS that uses

a training set of N instances, where the choice of N has

a major impact on the efficacy of the tuning process. For

small N , there is a risk of over-fitting, i.e., good parameter

configurations determined for the corresponding small sets

may be overly specific to the training set and not work well

for any other problem instances. For large N , however, the

evaluation of each parameter configuration becomes costly,

which can severely limit the number of search steps that can

be practically performed by PARAMILS (and hence reduce

the quality of the final parameter configuration returned by

the tuning algorithm).

FOCUSEDILS is a more advanced version of PARAMILS. It

adaptively chooses the number of training instances to use for

each parameter setting: while poor settings can be discarded

after a few algorithm runs, promising ones are evaluated on

more instances. This mechanism avoids over-fitting to the

instances in the training set. (For details, see [7].) In tuning

SPEAR, we initially used BASICILS(300) and later employed

the more advanced FOCUSEDILS.

V. AUTOMATED PARAMETER OPTIMIZATION

We performed two sets of experiments: automated tuning

of SPEAR on a general set of instances for the 2007 SAT

competition and application-specific tuning for two real-world

benchmark sets.

A. Benchmark Sets and Experimental Setup

We employed two sets of problems of immense practical

importance: hardware bounded model checking and software

verification. Specifically, our set of BMC instances consists of

754 IBM BMC instances created by Zarpas [23], and our SVW

benchmark set is comprised of 604 verification conditions

generated by the CALYSTO static checker [8].

Both instance sets, BMC and SWV, were split 50:50 into

disjoint training and test sets. Only the training sets were used

for tuning, and all results in this paper are for the test sets.

All reported experiments were carried out on a cluster of 55

dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM,

running OpenSuSE Linux 10.1. Reported times are CPU times

per single CPU. Runs are terminated after 10 CPU hours or

when they run out of memory and start swapping; we count

both of these conditions as time-outs.

B. Search Parameters

The availability of automatic parameter tuning encouraged

us to parameterize many aspects of SPEAR. The first automat-

ically tuned version exposed only a few important parameters,

such as restart frequencies and variable priority increments.

The results of automated tuning of those first versions of

SPEAR prompted its developer to expose more and more

search parameters, up to the point where not only every single

hard-coded parameter was exposed, but also a number of new

parameter-dependent features were incorporated. This process

not only significantly improved SPEAR’s performance, but also

has driven the development of SPEAR itself.

The resulting version of SPEAR used for the experiments

reported in the following has 26 parameters:

• 7 types of heuristics (with the number of different heuris-

tics available shown in parentheses):

– Variable decision heuristics (20)

– Heuristics for sorting learned clauses (20)

– Heuristics for sorting original clauses (20)

– Resolution ordering heuristics (20)

– Phase selection heuristics (7)

– Clause deletion heuristics (3)

– Resolution heuristics (3)

• 12 double-precision floating point parameters, including

variable and clause decay, restart increment, variable and

clause activity increment, percentage of random variable

and phase decisions, heating/cooling factors for the per-

centage of random choices, etc.

• 4 integer parameters which mostly control restarts and

variable/clause elimination.

• 3 Boolean parameters which enable/disable simple opti-

mizations such as the pure literal rule.

For each of SPEAR’s floating point and integer parameters

we chose lower and upper bounds on reasonable values and

considered a number of values spread uniformly across the

respective interval. This number ranges from three to eight,

depending on our intuition about importance of the parameter.

The total number of possible combinations after this discretiza-

tion is 3.78×10
18. By exploiting some dependencies between

parameters, we reduced the number of configurations that we

consider in this paper to 8.34 × 10
17.

C. SAT Competition Tuning

The first round of automatic parameter optimization was

done in the context of preparing a version of SPEAR for

submission to the 2007 SAT Competition. The first two authors

used this as a case study in parameter optimization for real-

world problem domains: the SPEAR developer provided an

executable of SPEAR and information about its parameters

as well as approximate ranges of reasonable values for each

of them; the default parameter configuration, however, was

not revealed. The goal of this study was to see whether

the performance achieved with automatic methods could rival

the performance achieved by the manually engineered default

parameters.

Since the optimization objective was to achieve good perfor-

mance on the industrial benchmarks of the 2007 SAT Compe-

tition (which were not disclosed before the solver submission

deadline), we used a collection of instances from previous

competitions for tuning: 176 industrial instances from the 2005

SAT Competition, 200 instances from the 2006 SAT Race, as

well as 30 SWV instances generated by the CALYSTO static

checker. A subset of 300 randomly selected instances was used

for training, and the remaining 106 test instances provided an

unbiased performance estimate of SPEAR’s performance with



the tuned parameter configuration. Since the SAT competition

rules reward per-instance performance relative to other solvers,

the optimization objective used in this phase was geometric

mean speedup over SPEAR with the (manually optimized)

default parameter settings.

We ran a single run of BASICILS(300) for three days on

the 300 designated training instances, and used the parameter

configuration with the best training set performance found

within that time; we refer to this parameter configuration as

Satcomp. During tuning, we took the risk of setting a low

cutoff time of 10 seconds for each single algorithm run in order

to save time. This bore the possibility of over-tuning the solver

for good performance on short runs but poor performance

on longer runs, and we expected that parameter configuration

Satcomp may be too aggressive and might perform poorly

on harder instances.

However, our experimental results indicate that the opposite

is the case, namely that SPEAR’s performance scales better

with the Satcomp parameter settings than with the default

settings. The fact that these results contradicted the intuition of

the algorithm’s developer illustrates clearly the limitations of

even an expert’s ability to comprehend the complex interplay

between the many parameters of a sophisticated heuristic

algorithm such as SPEAR.

On the 106 test instances used to assess the result of

our SAT competition tuning, Satcomp achieved a geometric

mean speedup of 21% over SPEAR’s default parameter settings

and showed much better scaling with instance hardness. Fig-

ure 2 demonstrates that this speedup carries over to both our

verification benchmark sets: Satcomp performs better than

the SPEAR default on BMC (with an average speedup factor of

about two) and clearly dominates it for SWV (with an average

speedup factor of about 78).

D. Application-specific Tuning

While general tuning on a mixed set of instances as per-

formed for the 2007 SAT Competition resulted in a solver with

strong overall performance, in practice, one often mostly cares

about excellent performance on a specific type of instances,

such as BMC or SWV. For this reason we performed a second

set of experiments — tuning SPEAR for these two specific

sets of problems. Since users typically care most about an

algorithm’s total runtime, we used average (arithmetic mean)

runtime as our optimization objective in this tuning phase.

For both sets, during training we chose a cutoff of 300

seconds, which according to SPEAR’s internal book-keeping

mechanisms turned out to be sufficient for exercising all

techniques implemented in the solver. In order to speed up

the optimization, in the case of BMC we removed 95 hard

instances from the training set that could not be solved by

SPEAR with its default parameter configuration within one

hour, leaving 287 instances for training.

We performed parameter optimization by running 10 paral-

lel copies of FOCUSEDILS on a cluster, for three days in the

case of SWV and for two days for BMC. For each instance set,

we picked the parameter configuration with the best training

performance after that time.

Figure 3 demonstrates that these application-specific pa-

rameter configurations perform even better than the optimized

settings for the SAT competition, Satcomp. SPEAR’s perfor-

mance is boosted for both application domains, by an average

factor of over 2 for BMC and over 20 for SWV; the scaling

behavior also clearly improves, especially for SWV.

Figure 4 shows the total effect of automatic tuning by

comparing the performance of SPEAR with the (manually

optimized) default settings against that achieved when using

the parameter configurations tuned parameters for the BMC

and SWV benchmark sets. For both sets, the scaling behavior

of the tuned version is much better and on average, large

speedups are achieved — by a factor of 4.5 for BMC and

500 for SWC. SPEAR with the default settings even times out

on four SWV instances after 10 000 seconds, while the tuned

version solves every single instance in less than 20 seconds.

Figure 5 summarizes the performance of MiniSAT 2.0

(which we used as a baseline) and SPEAR with parameter

settings default, Satcomp, and specifically tuned for BMC

and SWV. Notice that the versions of SPEAR specifically tuned

for BMC and SWV also clearly outperform MiniSAT: for

BMC, SPEAR solves two additional instances and is faster by a

factor of three on average; for SWV, the speedup factor is over

100. For both benchmark sets, scatter plots (not shown here)

also reveal much better scaling behavior of the specifically

tuned versions of SPEAR.

VI. DISCUSSION

Automated parameter tuning provided us with new insights

into properties of the benchmark instances used in our study

and influenced the design of SPEAR. These insights arise from

considering characteristic differences between the optimized

parameter configurations for the BMC and SVW instances.

Although we have limited knowledge about the high-level

features of the IBM BMC instances, we made some interesting

observations. The best decision heuristic that we found for

these instances picks variables with higher activity, and ties

are resolved by choosing the one with a smaller product of

positive and negative occurrences. We also found that the IBM

BMC instances favor less aggressive restarts than the SVW

instances, implying that the decision heuristic tends to find

better variable orderings. The best phase selection heuristic

we found for BMC instances aggressively picks the phase so

as to minimize the number of watched clauses that need to

be traversed in order to find the next watched literal. This

heuristic minimizes the number of clauses that BCP needs

to analyze, and its effectiveness on this hard set of instances

did not surprise us. Finally, we observed that a small amount

of randomness helps performance — roughly 5% of phase

and variable decisions were done randomly before the first

restart. The most effective strategy scales down the percentage

of random decisions by a factor of 0.7 at each restart (which

resembles the idea of simulated annealing).
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Fig. 2. Improvements by automated parameter optimization on a mix of industrial instances: SPEAR with the original default parameter configuration vs.
SPEAR with configuration Satcomp. (a) Even though a few instances can be solved faster with the SPEAR default, parameter configuration Satcomp is
considerably faster on average (mean runtime 341 vs. 223 seconds). Note that speedups are larger than they may appear in the log-log plot: for the bulk of
the instances Satcomp is about twice as fast. (b) Satcomp improves much on the scaling behavior of the SPEAR default, which fails to solve four instances
in 10 000 seconds. Mean runtimes on the remaining instances are 787 seconds vs. 10 seconds, a speedup factor of 78.
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Fig. 3. Improvements by automated parameter optimization on specific instance distributions: SPEAR with configuration Satcomp vs. SPEAR with parameters
optimized for the specific applications BMC and SWV. Results are on independent test sets disjoint from the instances used for parameter optimization. (a)
The parameter configuration tuned for set BMC solved four instances for which configuration Satcomp timed out after 10 000 seconds. For the remaining
instances, mean runtimes are 223 seconds (Satcomp) and 96 seconds (specific tuning for BMC), a speedup by more than a factor of two. (b) Both parameter
settings solved all 302 instances, mean runtimes are 36 seconds (Satcomp) and 1.5 seconds (tuned for SWV), a speedup factor of 24.

Since we are intimately familiar with the CALYSTO static

checker, we are able to provide a deeper analysis for the

software verification instances. CALYSTO performs aggres-

sive common subexpression elimination, virtually eliminating

all symmetries. It also propagates all constants. CALYSTO

queries correspond to path- and context-sensitive verification

conditions, which have deep and rich Boolean structure, with

many expensive operations (like division and multiplication)

sprinkled around. The queries can be represented at a high

level as single-rooted acyclic graphs. Experimental results (see

[8]) suggest that the probability of infeasibility of a single path

starting from the root of the formula is proportional to the

length of the path — the longer the path, the more likely it is

that it is infeasible. This can be exploited by a SAT solver by

focusing the search on the expressions that are closer to the

root of the tree.

SWV instances prefer an activity-based heuristic that re-

solves ties by picking the variable with a larger product of

occurrences. This heuristic might seem too aggressive, but

helps the solver to focus on the most frequently used common

subexpressions. It seems that a relatively small number of

expressions play a crucial role in (dis)proving each verifica-
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Fig. 4. Overall improvements achieved by automatic tuning: SPEAR with its manually engineered default parameter configuration vs. the optimized versions
for sets BMC and SWV. Results are on test sets disjoint from the instances used for parameter optimization. (a) The default timed out on 90 instances after
10 000 seconds, while the tuned configuration solved four additional instances. For the instances that the default solved, mean runtimes are 341 seconds
(default) and 75 seconds (tuned), a speedup factor of 4.5. (b) The default timed out on four instances after 10 000 seconds, the tuned configuration solved
all instances in less then 20 seconds. For the instances that the default solved, mean runtimes are 787 seconds (default) and 1.35 seconds (tuned), a speedup
factor of over 500.

Solver
Bounded model checking Software verification

#(solved) runtime for solved #(solved) runtime for solved

MiniSAT 2.0 289/377 360.9 302/302 161.3

SPEAR original 287/377 340.8 298/302 787.1

SPEAR general tuned 287/377 223.4 302/302 35.9

SPEAR specific tuned 291/377 113.7 302/302 1.5

Fig. 5. Summary of Results. For each solver and instance set, #(solved) denotes the number of instances solved within a CPU time of 10 hours, and the
runtimes are the arithmetic mean runtimes for the instances solved by that solver. (Geometric means were not meaningful here, as all solvers solved a number
of easy instances in “0 seconds”; arithmetic means better reflect practical user experience as well.) If an algorithm solves more instances, the shown average
runtimes include more, and typically harder, instances. Note that the averages in this table differ from the runtimes given in the captions of Figures 1-4,
because averages are taken with respect to different instance sets: for each solver, this table takes averages over all instances solved by that solver, whereas
the figure captions state averages over the instances solved by both solvers compared in the respective figure.

tion condition, and this heuristic quickly narrows the search

down to such expressions. The SWV instances favored very

aggressive restarts (first after only 50 conflicts), which in

combination with our experimental results shows that most

such instances can be solved quickly if the right order of

variables is found. A simple phase selection heuristic (always

assign FALSE first) seems to work well for SWV, and also

produces more natural bug traces (small values of variables in

the satisfying assignments). The SWV instances correspond to

NULL-pointer dereferencing checks, and this phase selection

heuristic attempts to propagate NULL values first (all FALSE),

which explains its effectiveness. SWV instances prefer no

randomness at all, which is probably the result of joint

development of CALYSTO and SPEAR as a highly optimized

tool chain for software verification.

The use of automated parameter optimization also influ-

enced the design of SPEAR in various ways. An early ver-

sion of SPEAR featured a nascent implementation of clause

and variable elimination. Prior to using automated tuning,

these mechanisms did not consistently improve performance,

and therefore, considering the complexity of finalizing their

implementation, the SPEAR developer considered removing

them. However, these elimination techniques turned out to be

effective after parameter tuning found good heuristic settings

to regulate the elimination process. Another feature that was

considered for removal was the pure literal rule, which ended

up being useful for BMC instances (but not for SWV).

Similarly, manual optimization gave inconclusive results about

randomness, but automated optimization found that a small

amount of randomness actually does help SPEAR in solving

BMC (but not SWV) instances.

VII. CONCLUSIONS

In this work, we have demonstrated that by using a general

parameter optimization method, PARAMILS, which is based

on the idea of iterated local search in parameter configu-

ration space, major performance improvements of a high-

performance SAT solver, SPEAR, can be achieved. We believe

that the resulting optimized version of SPEAR represents a

considerable improvement in the state of the art of solving



decision problems from hardware and software verification

using SAT-solvers. Tuning SPEAR on a general set of industrial

instances from previous SAT competitions already resulted in

large improvements when compared to SPEAR’s manually op-

timized default parameter setting. The greatest improvements,

however, were achieved when tuning was performed on a

specific, relatively homogenous class of problem instances.

Average runtimes were reduced by a factor of 4.5 for bounded

model checking instances and a factor of over 500 for software

verification instances (see Figure 4). It is worth noting that

prior to applying our automated tuning approach, considerable

time had been invested by its author to manually tune SPEAR.

This indicates that automated parameter optimization can be

considerably more effective than manual tuning, and that the

use of automated tuning procedures such as PARAMILS not

only frees the algorithm designer (and user) from the typically

tedious and time-consuming manual tuning task, but also helps

to better exploit the full performance potential of a highly

parameterized heuristic solver.

Not too surprisingly, our experimental results suggest that

optimized search parameters are benchmark-dependent —

which highlights the advantages of automated parameter tun-

ing over the conventional manual approach. Furthermore, pa-

rameter tuning is obviously engine-dependent, due to complex

interactions between various mechanisms implemented in a

typical decision procedure.

We also illustrated how the use of automated parameter

optimization provided guidance in the development of SPEAR

and in particular encouraged its developer to expose a large

number of parameters that could then be optimized. We are

convinced that similar benefits will arise when applying our

general approach in the development of other heuristic algo-

rithms. Finally, comparing specifically optimized parameter

configurations, we gained some insights into which compo-

nents of SPEAR were particularly effective on the hardware

and software verification instances considered here.

In future work, we intend to further explore the role of

local search and machine learning strategies that support

algorithm design and engineering tasks. We believe that the

tuning procedure can be further improved, for example, by

combining ideas from our current local-search-based approach

with concepts from racing procedures, or by incorporating

techniques from experimental design. We also see significant

potential in instance-specific tuning methods, which use ma-

chine learning techniques to find good parameter settings for a

given problem instance [24], and in reactive tuning strategies,

which adapt parameter settings while a solver is running

(utilizing information gathered while trying to solve the given

instance) [25]. Finally, considering that many other design

and engineering tasks involve heuristic algorithms, we are

convinced that the use of automated algorithm configuration

and parameter optimization procedures can lead to similarly

substantial performance improvements as demonstrated here

and hope to collect further evidence for this claim in the near

future.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, 1986.

[2] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent advances in
SAT-based formal verification.” STTT: International Journal on Software
Tools for Technology Transfer, vol. 7, no. 2, pp. 156–173, April 2005.

[3] G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford University, 1979.

[4] J. P. M. Silva, “The Impact of Branching Heuristics in Propositional
Satisfiability Algorithms,” in EPIA ’99: Proc. of the 9th Portuguese
Conference on Artificial Intelligence, ser. LNCS, vol. 1695. Springer,
1999, pp. 62–74.

[5] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: engineering an efficient SAT solver,” in DAC ’01: Proc. of the
38th conference on Design automation. ACM Press, 2001, pp. 530–535.

[6] A. Bhalla, I. Lynce, J. de Sousa, and J. Marques-Silva, “Heuristic back-
tracking algorithms for SAT,” in MTV ’03: Proc. of the 4th International
Workshop on Microprocessor Test and Verification: Common Challenges
and Solutions, 2003, pp. 69–74.
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