
SATzilla2007: a New & Improved Algorithm Portfolio for SAT

Lin Xu, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown
Computer Science Dept., University of British Columbia

Vancouver, BC, Canada
{xulin730, hutter, hoos, kevinlb}@cs.ubc.ca

1 Introduction
Empirical studies often observe that the performance of
algorithms across problem domains can be quite uncorre-
lated. When this occurs, it seems practical to investigate
the use of algorithm portfolios that draw on the strengths
of multiple algorithms. SATzilla is such an algorithm
portfolio for SAT problems; it was first deployed in the
2004 SAT competition [4]. SATzilla is based onempir-
ical hardness models [3, 5], learned predictors that esti-
mate each algorithm’s runtime on a given SAT instance.

SATzilla2007 is a new version of SATzilla that incor-
porates new research on empirical hardness models:

• Regression based on partly censored data (i.e. in-
cluding runs that time out);

• Probabilistic prediction of instance satisfiability;
• Hierarchical models: separate models for satisfiable

and unsatisfiable instances, and probabilistic com-
bination of the two for prediction.

SATzilla2007’s methodology can be outlined as
follows:

Offline, as part of algorithm development:

1. Identify a target distribution of problem instances.
2. Select a set of algorithms having relatively uncorre-

lated runtimes on this distribution.
3. Using domain knowledge, identify features that

characterize problem instances.
4. Compute features and determine algorithm running

times.
5. Use regression to construct models of algorithms’

runtimes.

Online, given an instance:

1. Compute feature values.
2. Predict each algorithm’s running time using learned

runtime models.
3. Run the algorithm predicted to be fastest.

2 SATzilla Framework
SATzilla2007 includes the following six solvers: Min-
isat2.0, Marchdl, Vallst, Zchaff rand, kcnfs2006, and
SAPS (with the best fixed parameter setting from [2]).

The version submitted to the demonstration division also
contains the proprietary solvers Eureka and RSAT.1

For training data, we used all available SAT instances
from previous SAT competitions (2002 until 2005) and
from the SAT Race 2006. Based on these instances, we
built three data sets:

• Random, consisting of all 2,300 random instances;
• Crafted, consisting of all 1,490 handmade/crafted

instances;
• All containing all 4,811 instances.

For each training instance we ran each algorithm and
recorded its runtime. ForRandom andCrafted, we ran
the algorithms again after preprocessing with HyPre [1].
The timeout value for HyPre was set to 60 seconds, and
the timeout for each algorithm run was set to at least 30
minutes (one hour when we could afford it).

We computed 64 characteristic features for each in-
stance, a computationally cheap subset of the features
used in [5].2 These comprised 33 basic features, 7 fea-
tures from DPLL probes, and 24 features from local
search probes. All features were normalized to mean
zero and standard deviation one on the training set. The
time required for computing basic features was instance-
dependent with a timeout of 60 seconds. Two seconds
were allocated to computing the local search features for
each instance, and one second for DPLL probes. OnRan-
dom andCrafted, the average complete feature computa-
tion time was five seconds; forAll, it was 31 seconds.

Since the SAT competition scoring function rewards
quick algorithm runs, we cannot afford to do this fea-
ture computation for very easy instances (for which run-
times around five seconds are much too large). Thus,
we looked at the raw runtime data to identify the algo-
rithm that was most efficient in solving easy instances.
This algorithm was Marchdl, which solved 32%, 30.5%,
and 29.9% of the instances in ourRandom, Crafted, and
All data sets within five seconds. For the remaining in-
stances, we decided to run SAPS for two seconds. We
decided to do so because its runtimes are completely un-
correlated with Marchdl (Pearson correlation coefficient

1Adding and deleting solvers is very straightforward and does not
require retraining the existing models. SATzilla2007 will be available
online with a description of how to plug in your own solver.

2E.g., the linear programming and clause graph features from [5]
were discarded since they timed out on too many instances.

1



-0.014 for the 398 remaining instances that both solvers
solved). This SAPS phase solves 12.0%, 6.9%, 3.6% of
the remainingRandom, Crafted andAll instances.

For each of our data sets we then built predictive
models of runtime for all our algorithms except SAPS3

for the remainder of the instances. ForRandom and
Crafted, we also built separate predictive models for each
algorithm when the instance is first preprocessed with
HyPre. Since these latter models include preprocessing
time we can view the combination of two preprocessings
(HyPre/none) and five algorithms as 10 different solvers,
for each of which we have a predictive model of runtime.

Since predictive models are typically not perfect, it is
inadvisable to use too many solvers in a portfolio: when
a solver performs poorly on an instance but is predicted
to perform best, then dropping this solver from the port-
folio can increase overall performance. Picking the opti-
mal subset of solvers is a a simple subset selection prob-
lem: pick the portfolio that, when run using the predic-
tive models for each solver, achieves the overall lowest
runtime. We performed exhaustive subset selection for
our 10 solvers (seven forAll). This led us to select the
following combinations of solvers for each of our data
sets (“+p” stands for “plus preprocessing”):

• Random: March dl, kcnfs2006, Minisat2.0+p;
• Crafted: Minisat2.0, Minisat2.0+p, Marchdl+p,

March dl, Vallst+p, Zchaffrand+p;
• All: Minisat2.0, Eureka, Marchdl, kcnfs2006,

Vallst, Zchaff rand.

In summary, when SATzilla is asked to solve an in-
stance, it first runs Marchdl for five seconds, then runs
SAPS for two seconds, then computes features (typically
in less than five seconds), feeds the computed features
into each of the predictive models to get runtime predic-
tions (a matter of milliseconds) and then runs the best
predicted solver until timeout. If feature computation
times out, a default solver is used. If a solver crashes,
the next best one is run using the time that remains.

3 New Technologies
SATzilla implements a number of (as yet unpublished)
improvements for building empirical hardness models.

Censored data. A large portion (for each solver at
least about half) of the runs we used for training timed
out. In statistics, data points for which all that is known is
a lower bound on the response variable are calledright-
censored. The previous version of SATzilla and other
published work on empirical hardness models [3, 5, 2]
have either pretended that a censored run finished at

3Even though it is possible to build highly predictive models of run-
time for local search algorithms like SAPS (see [2]), the limitation of
local search to satisfiable instances leads us to only use it for a short
amount of time in the beginning but not include it in the portfolio.

the cutoff time, or have dropped censored data. Both
approaches produce biased models. Here, we follow
the iterated reweighted least squares (IRLS) approach
from [6] to dealing with censored data, leading to much
better results. We start by learning a model only from un-
censored data. This is followed by two steps: (1) the re-
sponse variable for the censored data is filled in by model
predictions, and (2) the model is refitted. These steps are
iterated until the model converges.

Predictions of satisfiability status. For many in-
stances, it is possible to predict with surprisingly high
accuracy whether the instance is satisfiable or not. The
features we use are exactly the same features used for
building the predictive models of runtime. We imple-
ment probabilistic classification via logistic linear regres-
sion. If this technique is used for a hard classification of
instances into satisfiable and unsatisfiable, classification
performance is 95.2% on data setRandom and 80.8% on
Crafted (we did not use this approach for data setAll
because it includes many instances with unknown satis-
fiability status).

Hierarchical models. Finally, we exploit the above
probabilistic classification into satisfiable/unsatisfiable,
and the fact that we can build more accurate models
conditional on knowing the satisfiability status of in-
stances. We train separate models using only satisfi-
able/unsatisfiable instances, and combine their predic-
tions. This approach substantially outperformed a naı̈ve
approach that only trains a single model for both satisfi-
able and unsatisfiable instances.

4 Expected Behaviour
We submit three different version of SATzilla, one for
each of our training data sets. We expect satzilla-r (ran-
dom) to perform well on random instances, satzilla-c to
perform well on crafted instances, and satzilla to perform
well overall. The latter includes two proprietary solvers
and is thus submitted to the demonstration division.

References
[1] F. Bacchus and J. Winter. Effective preprocessing with hyper-

resolution and equality reduction. InLNCS 2919: Revised Selected
Papers of SAT 2003, pages 341–355. Springer, 2004.

[2] F. Hutter, Y. Hamadi, K. Leyton-Brown, and H. H. Hoos. Perfor-
mance prediction and automated tuning of randomized and para-
metric algorithms. InProc. of CP-06, pages 213–228, 2006.

[3] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the
empirical hardness of optimization problems: The case of combi-
natorial auctions. InProc. of CP-02, 2002.

[4] E. Nudelman, A. Devkar, Y. Shoham, K. Leyton-Brown, and
H. Hoos. SATzilla: An algorithm portfolio for SAT, 2004.

[5] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and
Y. Shoham. Understanding random SAT: Beyond the clauses-to-
variables ratio. InProc. of CP-04, 2004.

[6] J. Schmee and G. J. Hahn. A simple method for regression analysis
with censored data.Technometrics, 21(4):417–432, 1979.

2


