Automatic Algorithm Configuration
based on Local Search

Frank Hutter! Holger Hoos! Thomas Stiitzle?

IDepartment of Computer Science
University of British Columbia
Canada

2IRIDIA
Université Libre de Bruxelles
Belgium

Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

» New DPLL-type SAT solver (SPEAR)

— Variable/value heuristics, clause learning, restarts, ...

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

» New DPLL-type SAT solver (SPEAR)

— Variable/value heuristics, clause learning, restarts, ...
— 26 user-specifiable parameters:
7 categorical, 3 boolean, 12 continuous, 4 integer parameters

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

» New DPLL-type SAT solver (SPEAR)

— Variable/value heuristics, clause learning, restarts, ...
— 26 user-specifiable parameters:
7 categorical, 3 boolean, 12 continuous, 4 integer parameters

» Minimize expected run-time

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Real-world example for algorithm configuration:
Tree search for SAT-encoded software verification

» New DPLL-type SAT solver (SPEAR)
— Variable/value heuristics, clause learning, restarts, ...

— 26 user-specifiable parameters:
7 categorical, 3 boolean, 12 continuous, 4 integer parameters

» Minimize expected run-time

» Problems:

— Huge variation in runtime (with default setting):

< 1 second for some instances

> 1 day for others
— Good performance on a few instances does not generalise well
— Many possible configurations (8.34 x 10%7 after discretization)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

N

Standard algorithm configuration approach

» Choose a “representative” benchmark set for tuning

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Standard algorithm configuration approach

» Choose a “representative” benchmark set for tuning

» Perform iterative manual tuning:

start with some parameter configuration

repeat
modify a single parameter

if results on tuning set improve then
| keep new configuration

until no more improvement possible (or “good enough”)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Problems of standard approach

» Slow and tedious, requires significant human time

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Problems of standard approach

» Slow and tedious, requires significant human time

» Not guaranteed to find global optimum

— Hill climbing ~~ local minimum only

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Problems of standard approach

» Slow and tedious, requires significant human time

» Not guaranteed to find global optimum

— Hill climbing ~~ local minimum only

» “Representative” benchmark set may not be representative

— Constraints on tuning time
~> typically only few instances
~ typically fairly easy instances

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Problems of standard approach

» Slow and tedious, requires significant human time

» Not guaranteed to find global optimum

— Hill climbing ~~ local minimum only

» “Representative” benchmark set may not be representative

— Constraints on tuning time
~> typically only few instances
~ typically fairly easy instances

Solution:

» Automate process

» Use more powerful search method

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Related work

» Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Related work

» Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

» Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 — 2007]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Related work

» Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

» Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 — 2007]

» Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Related work

» Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

» Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 — 2007]

» Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

» Learning approaches

— Regression trees [Bartz-Beielstein et al. 2004]
— Response surface models, DACE
[Bartz-Beielstein et al. 2004-2006]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Related work

v

Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

v

Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 — 2007]

v

Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

v

Learning approaches
— Regression trees [Bartz-Beielstein et al. 2004]
— Response surface models, DACE
[Bartz-Beielstein et al. 2004-2006]

v

Lots of work on per-instance tuning / reactive search
~> orthogonal to the approach followed here

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Outline

N

. Iterated local search over parameter configurations
3. The BasiclLS and FocusedILS algorithms
4. Sample applications and performance results

5. Conclusions and future work

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

The ParamlILS framework

ILS in parameter configuration space (ParamiLS):

Choose initial parameter configuration 6
Perform subsidiary local search on 6

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

The ParamlILS framework

ILS in parameter configuration space (ParamiLS):

Choose initial parameter configuration 6
Perform subsidiary local search on 6
While tuning time left:

0 =40

perform on 6

perform subsidiary local search on 6

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

The ParamlILS framework

ILS in parameter configuration space (ParamiLS):

Choose initial parameter configuration 6
Perform subsidiary local search on 6
While tuning time left:

0 =40

perform on 6

perform subsidiary local search on 6

based on acceptance criterion,
keep 6 or revert to 0 := ¢’

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

The ParamlILS framework

ILS in parameter configuration space (ParamiLS):

Choose initial parameter configuration 6
Perform subsidiary local search on 6
While tuning time left:

0 =40

perform on 6

perform subsidiary local search on 6

based on acceptance criterion,
keep 6 or revert to 0 := ¢’

| with probability prestarr randomly pick new 6

~» Performs biased random walk over local optima

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Details on ParamlLS:

» Initialisation: pick best of default & R random configurations

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Details on ParamlLS:

> Initialisation: pick best of default & R random configurations

» Subsidiary local search: iterative first improvement,
change one parameter in each step

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Details on ParamlLS:

> Initialisation: pick best of default & R random configurations

» Subsidiary local search: iterative first improvement,
change one parameter in each step

» Perturbation: change s randomly chosen parameters

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Details on ParamlLS:

> Initialisation: pick best of default & R random configurations

» Subsidiary local search: iterative first improvement,
change one parameter in each step

» Perturbation: change s randomly chosen parameters

» Acceptance criterion: always select better local optimum

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Evaluation of a parameter configuration 6
(based on N runs)

» Sample N instances from given set (with repetitions)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Evaluation of a parameter configuration 6
(based on N runs)

» Sample N instances from given set (with repetitions)

» For each of the N instances:

— Execute algorithm with configuration 6
— Record scalar cost of the run
(user-defined: e.g. run-time, solution quality, ...)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Evaluation of a parameter configuration 6
(based on N runs)

» Sample N instances from given set (with repetitions)

» For each of the N instances:

— Execute algorithm with configuration 6
— Record scalar cost of the run
(user-defined: e.g. run-time, solution quality, ...)

» Compute of the N costs
(user-defined: e.g. empirical mean, median, ...)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

The BasiclLS(N) algorithm

» Use a fixed number of N runs to evaluate each configuration 6

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 10

The BasiclLS(N) algorithm

» Use a fixed number of N runs to evaluate each configuration 6

Question: How to choose number of runs N?

» Too many

~~ evaluating a configuration is very expensive
~~ optimisation process is very slow

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 10

The BasiclLS(N) algorithm

» Use a fixed number of N runs to evaluate each configuration 6
Question: How to choose number of runs N?

» Too many
~~ evaluating a configuration is very expensive
~~ optimisation process is very slow

» Too few
~~ very noisy approximations &y(6)
~~ poor generalisation to independent test runs

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 10

Generalisation to independent test set,large N (N=100)

Runlength (median, 10% & 90% quantiles)

(SAPs on quasigroups with holes)

x 10°
25} |~ — ~BasiclLS(100) performance on training set
S RREERREY
\
2r ==,
...... == S - L
1.5 b
‘,‘~
b 73
- "\ ': ‘e
1F ,H‘___m
10 10° 10° 10
CPU time [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

11

Generalisation to independent test set,large N (N=100)

(SAPs on quasigroups with holes)

X 104

——BasiclLS(100) performance on test set
25} |~ — ~BasiclLS(100) performance on training set

1.5}

Runlength (median, 10% & 90% quantiles)

10" 10° 10° 10*
CPU time [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 11

Generalisation to independent test set, small N (N=1)

(SAPs on quasigroups with holes)
4

6 x 10

——BasiclLS(1) performance on test set
sl = = =BasiclLS(1) performance on training set
4t

N wW

Iy

Runlength (median, 10% & 90% quantiles)

=
OO

CPU time [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Test performance of BasiclLS with different N

(SAPs on quasigroups with holes)

5o X 10"
o BasiclLS(100)
U) — - = m—
g 2} \ l
0, \
(D/_) 1
1
< 1.8} \ h
U) \
G \
< 1.6} 1 E
o 1
c [}
k9] .
S 1.4f ' ;
3
S 1.2} \ -
()
= \‘\-... -
1= = = 4
10 10 10 10

CPU time for ParamiLS [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 13

Test performance of BasiclLS with different N

(SAPs on quasigroups with holes)

2.2

BasiclLS(100)

[

1 -

1.8}

16}

1

1

1

1
s
\
1
i
[}

. .

14} “Basu:ILS(lO) |

L}

1.2} p 1

Median runlength of SAPS [steps]

Sear, o

1
10

N 10° 10° 10*
CPU time for ParamiLS [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 13

Test performance of BasiclLS with different N

(SAPs on quasigroups with holes)

5o X 10
o BasicILS(100)
n --——
§ 2f \ 1
0, \
% ! .
& 18} : BasiclLS(1) |
0 A
G .
< 1.6} 1 E
=4
o 1 Baci
< 14} | BasiclLS(10) |
= 1
c L)
8
9 1.2} L 7
(O]
= Mo
1= = = 4
10 10 10 10

CPU time for ParamiLS [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 13

The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 14

The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration 6

» Idea: Use high N(6) only for good 6

— start with N(6) = 0 for all ¢
— increment N(6) whenever 6 is visited
— additional runs upon finding new, better configuration

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 14

The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration 6

» Idea: Use high N(6) only for good 6

— start with N(6) = 0 for all ¢
— increment N(6) whenever 6 is visited
— additional runs upon finding new, better configuration

Theorem:
As number of FocusedILS iterations — oo,
it converges to true optimal configuration 6*

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 14

The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration 6

» Idea: Use high N(6) only for good 6

— start with N(6) = 0 for all ¢
— increment N(6) whenever 6 is visited
— additional runs upon finding new, better configuration

Theorem:
As number of FocusedILS iterations — oo,
it converges to true optimal configuration 6*

» Key ideas in proof
1. For N(0) — oo, en(0) — ()
2. Underlying ILS eventually reaches any configuration 6.

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 14

Performance of FocusedILS vs BasiclLS

(Test performance of SAPS on quasigroups with holes)

5o X 10
o BasicILS(100)
n --——
§ 2f \ 1
0, \
% ! .
& 18} : BasiclLS(1) |
0 A
G .
< 1.6} 1 E
=4
o 1 Baci
< 14} | BasiclLS(10) |
= 1
c L)
8
9 1.2} L 7
(O]
= Mo
1= = = 4
10 10 10 10

CPU time for ParamiLS [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Performance of FocusedILS vs BasiclLS

(Test performance of SAPS on quasigroups with holes)

4
29 x 10 i
BasiclLS(100)
2t T 1

1
1 .

1.8} 0 ! BasiclLS(1) |
A
\

1.6} 1 :

'\ | BasiclLS(10) |

1.4} 1 “‘ l

1.2} pR 1
FocusedILS/)

1
10

Median runlength of SAPS [steps]

N 10° 10° 10*
CPU time for ParamiLS [s]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 16

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time

Scenario | Metric | Default | FocusedILS |BasiclLS(100)| CALIBRA(100)

SAps on GC Y Runtime Y 5.60 s | 0.043 1+ 0.005 Y 0.046 £ 0.01 Y 0.053 £ 0.010

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 16

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time

Scenario | Metric Default | FocusedILS |BasiclLS(100)| CALIBRA(100)

Saps on GC Runtime 5.60 s | 0.043 +0.005 | 0.046 + 0.01 0.053 £+ 0.010
GLs™ for MPE|Approx. error|e = 1.81(0.949 4 0.0001|0.951 4 0.004| 1.234 + 0.492

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 16

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time

Scenario | Metric Default | FocusedILS |BasiclLS(100)| CALIBRA(100)

Saps on GC Runtime 5.60 s | 0.043 +0.005 | 0.046 + 0.01 0.053 £ 0.010
GLs™ for MPE|Approx. error|e = 1.81(0.949 4 0.0001|0.951 4 0.004| 1.234 + 0.492
SAT43 on GC | Runtime 7.02s 0.65 0.2 1.19 £ 0.58 |(too many param.)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 16

Speedup obtained by automated tuning

(SAPs default vs tuned on graph colouring, test set performance)

run—time [s], auto—tuned parameters

[
o
i
'

_27

107107 10° 10" 10° 10° 10°
run—time [s], default parameters

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 17

Two “real-world” applications

» New DPLL-type SAT solver SPEAR
> 26 parameters
» Software verification: 500-fold speedup (won QB_FQ category
in SMT'07 competition)
» Hardware verification: 4.5-fold speedup
~~ New state of the art for those instances
~» [Hutter, Babi¢, Hoos & Hu: FMCAD '07 (to appear)]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 18

Two “real-world” applications

» New DPLL-type SAT solver SPEAR
> 26 parameters
» Software verification: 500-fold speedup (won QB_FQ category
in SMT'07 competition)
» Hardware verification: 4.5-fold speedup
~~ New state of the art for those instances
~» [Hutter, Babi¢, Hoos & Hu: FMCAD '07 (to appear)]

» New replica exchange Monte Carlo algorithm for protein
structure prediction
» 3 parameters
» 2-fold improvement
~+ New state of the art for 2D /3D protein structure prediction
~» [Thachuk, Shmygelska & Hoos: BMC Bioinformatics '07 (to
appear)]

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 18

Conclusions

» ParamlLS: Simple and efficient framework for automatic
parameter optimization

» Arbitrary number and types of parameters
» User-defined objective function

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

19

Conclusions

» ParamlLS: Simple and efficient framework for automatic
parameter optimization

» Arbitrary number and types of parameters
» User-defined objective function

» FocusedILS:

» Converges provably towards optimal configuration
» Excellent performance in practice (outperforms BasiclLS,
CALIBRA)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 19

Conclusions

» ParamlLS: Simple and efficient framework for automatic
parameter optimization

» Arbitrary number and types of parameters
» User-defined objective function

» FocusedILS:

» Converges provably towards optimal configuration
» Excellent performance in practice (outperforms BasiclLS,
CALIBRA)

» Huge speedups:

» ~ 100x for SAPs (local search) on graph colouring
» =~ 500x for SPEAR (tree search) on software verification

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 19

Conclusions

» ParamlLS: Simple and efficient framework for automatic
parameter optimization

» Arbitrary number and types of parameters
» User-defined objective function

» FocusedILS:

» Converges provably towards optimal configuration
» Excellent performance in practice (outperforms BasiclLS,
CALIBRA)

» Huge speedups:
» ~ 100x for SAPs (local search) on graph colouring

» =~ 500x for SPEAR (tree search) on software verification

» Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 19

Future work

» Continuous parameters (currently discretised)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

20

Future work

» Continuous parameters (currently discretised)

» Statistical tests (cf. racing algorithms)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

20

Future work

» Continuous parameters (currently discretised)
» Statistical tests (cf. racing algorithms)

» Learning approaches, sequential design of experiments

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

20

Future work

» Continuous parameters (currently discretised)
» Statistical tests (cf. racing algorithms)
» Learning approaches, sequential design of experiments

» Per-instance tuning

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

20

Future work

v

Continuous parameters (currently discretised)

v

Statistical tests (cf. racing algorithms)

v

Learning approaches, sequential design of experiments

v

Per-instance tuning

v

Automatic algorithm design

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search

20

