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Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

» New DPLL-type SAT solver (SPEAR)

— Variable/value heuristics, clause learning, restarts, ...
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Real-world example for algorithm configuration:
Tree search for SAT-encoded software verification

» New DPLL-type SAT solver (SPEAR)
— Variable/value heuristics, clause learning, restarts, ...

— 26 user-specifiable parameters:
7 categorical, 3 boolean, 12 continuous, 4 integer parameters

» Minimize expected run-time

» Problems:

— Huge variation in runtime (with default setting):

< 1 second for some instances

> 1 day for others
— Good performance on a few instances does not generalise well
— Many possible configurations (8.34 x 10%7 after discretization)
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Standard algorithm configuration approach

» Choose a “representative” benchmark set for tuning
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Standard algorithm configuration approach

» Choose a “representative” benchmark set for tuning

» Perform iterative manual tuning:

start with some parameter configuration

repeat
modify a single parameter

if results on tuning set improve then
| keep new configuration

until no more improvement possible (or “good enough”)
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Problems of standard approach

» Slow and tedious, requires significant human time
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Problems of standard approach

» Slow and tedious, requires significant human time

» Not guaranteed to find global optimum

— Hill climbing ~~ local minimum only

» “Representative” benchmark set may not be representative

— Constraints on tuning time
~> typically only few instances
~ typically fairly easy instances
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Problems of standard approach

» Slow and tedious, requires significant human time

» Not guaranteed to find global optimum

— Hill climbing ~~ local minimum only

» “Representative” benchmark set may not be representative

— Constraints on tuning time
~> typically only few instances
~ typically fairly easy instances

Solution:

» Automate process

» Use more powerful search method

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search



Related work

» Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]
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Related work

v

Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

v

Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 — 2007]

v

Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

v

Learning approaches
— Regression trees [Bartz-Beielstein et al. 2004]
— Response surface models, DACE
[Bartz-Beielstein et al. 2004-2006]

v

Lots of work on per-instance tuning / reactive search
~> orthogonal to the approach followed here
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Outline

N

. Iterated local search over parameter configurations
3. The BasiclLS and FocusedILS algorithms
4. Sample applications and performance results

5. Conclusions and future work
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The ParamlILS framework

ILS in parameter configuration space (ParamiLS):

Choose initial parameter configuration 6
Perform subsidiary local search on 6
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The ParamlILS framework

ILS in parameter configuration space (ParamiLS):

Choose initial parameter configuration 6
Perform subsidiary local search on 6
While tuning time left:

0 =40

perform on 6

perform subsidiary local search on 6

based on acceptance criterion,
keep 6 or revert to 0 := ¢’

| with probability prestarr randomly pick new 6

~» Performs biased random walk over local optima
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Details on ParamlLS:

» Initialisation: pick best of default & R random configurations
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Details on ParamlLS:

> Initialisation: pick best of default & R random configurations

» Subsidiary local search: iterative first improvement,
change one parameter in each step

» Perturbation: change s randomly chosen parameters

» Acceptance criterion: always select better local optimum
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Evaluation of a parameter configuration 6
(based on N runs)

» Sample N instances from given set (with repetitions)
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Evaluation of a parameter configuration 6
(based on N runs)

» Sample N instances from given set (with repetitions)

» For each of the N instances:

— Execute algorithm with configuration 6
— Record scalar cost of the run
(user-defined: e.g. run-time, solution quality, ...)
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Evaluation of a parameter configuration 6
(based on N runs)

» Sample N instances from given set (with repetitions)

» For each of the N instances:

— Execute algorithm with configuration 6
— Record scalar cost of the run
(user-defined: e.g. run-time, solution quality, ...)

» Compute of the N costs
(user-defined: e.g. empirical mean, median, ...)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search



The BasiclLS(N) algorithm

» Use a fixed number of N runs to evaluate each configuration 6
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The BasiclLS(N) algorithm

» Use a fixed number of N runs to evaluate each configuration 6

Question: How to choose number of runs N?

» Too many

~~ evaluating a configuration is very expensive
~~ optimisation process is very slow
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The BasiclLS(N) algorithm

» Use a fixed number of N runs to evaluate each configuration 6
Question: How to choose number of runs N?

» Too many
~~ evaluating a configuration is very expensive
~~ optimisation process is very slow

» Too few
~~ very noisy approximations &y(6)
~~ poor generalisation to independent test runs
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Generalisation to independent test set,large N (N=100)
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Generalisation to independent test set, small N (N=1)

(SAPs on quasigroups with holes)
4
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Test performance of BasiclLS with different N

(SAPs on quasigroups with holes)
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Test performance of BasiclLS with different N

(SAPs on quasigroups with holes)
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The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration
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The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration 6

» Idea: Use high N(6) only for good 6

— start with N(6) = 0 for all ¢
— increment N(6) whenever 6 is visited
— additional runs upon finding new, better configuration
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The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration 6

» Idea: Use high N(6) only for good 6

— start with N(6) = 0 for all ¢
— increment N(6) whenever 6 is visited
— additional runs upon finding new, better configuration

Theorem:
As number of FocusedILS iterations — oo,
it converges to true optimal configuration 6*
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The FocusedILS algorithm

» Use different numbers of runs, N(6), for each configuration 6

» Idea: Use high N(6) only for good 6

— start with N(6) = 0 for all ¢
— increment N(6) whenever 6 is visited
— additional runs upon finding new, better configuration

Theorem:
As number of FocusedILS iterations — oo,
it converges to true optimal configuration 6*

» Key ideas in proof
1. For N(0) — oo, en(0) — ()
2. Underlying ILS eventually reaches any configuration 6.
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Performance of FocusedILS vs BasiclLS

(Test performance of SAPS on quasigroups with holes)
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Performance of FocusedILS vs BasiclLS

(Test performance of SAPS on quasigroups with holes)
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Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time
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Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time

Scenario | Metric | Default | FocusedILS |BasiclLS(100)| CALIBRA(100)

SAps on GC Y Runtime Y 5.60 s | 0.043 1+ 0.005 Y 0.046 £ 0.01 Y 0.053 £ 0.010
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» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time

Scenario |  Metric Default | FocusedILS |BasiclLS(100)| CALIBRA(100)

Saps on GC Runtime 5.60 s | 0.043 +0.005 | 0.046 + 0.01 0.053 £+ 0.010
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Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

» CALIBRA: limited to 5 continuous/integer parameters

» ParamlLS better results with same tuning time

Scenario |  Metric Default | FocusedILS |BasiclLS(100)| CALIBRA(100)

Saps on GC Runtime 5.60 s | 0.043 +0.005 | 0.046 + 0.01 0.053 £ 0.010
GLs™ for MPE|Approx. error|e = 1.81(0.949 4 0.0001|0.951 4 0.004| 1.234 + 0.492
SAT43 on GC | Runtime 7.02s 0.65 0.2 1.19 £ 0.58 |(too many param.)

Hutter, Hoos, Stiitzle: Automatic Algorithm Configuration based on Local Search 16



Speedup obtained by automated tuning

(SAPs default vs tuned on graph colouring, test set performance)

run—time [s], auto—tuned parameters
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Two “real-world” applications

» New DPLL-type SAT solver SPEAR
> 26 parameters
» Software verification: 500-fold speedup (won QB_FQ category
in SMT'07 competition)
» Hardware verification: 4.5-fold speedup
~~ New state of the art for those instances
~» [Hutter, Babi¢, Hoos & Hu: FMCAD '07 (to appear)]
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Two “real-world” applications

» New DPLL-type SAT solver SPEAR
> 26 parameters
» Software verification: 500-fold speedup (won QB_FQ category
in SMT'07 competition)
» Hardware verification: 4.5-fold speedup
~~ New state of the art for those instances
~» [Hutter, Babi¢, Hoos & Hu: FMCAD '07 (to appear)]

» New replica exchange Monte Carlo algorithm for protein
structure prediction
» 3 parameters
» 2-fold improvement
~+ New state of the art for 2D /3D protein structure prediction
~» [Thachuk, Shmygelska & Hoos: BMC Bioinformatics '07 (to
appear)]
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Conclusions

» ParamlLS: Simple and efficient framework for automatic
parameter optimization

» Arbitrary number and types of parameters
» User-defined objective function
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Conclusions

» ParamlLS: Simple and efficient framework for automatic
parameter optimization

» Arbitrary number and types of parameters
» User-defined objective function

» FocusedILS:

» Converges provably towards optimal configuration
» Excellent performance in practice (outperforms BasiclLS,
CALIBRA)

» Huge speedups:
» ~ 100x for SAPs (local search) on graph colouring

» =~ 500x for SPEAR (tree search) on software verification

» Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS
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Future work

» Continuous parameters (currently discretised)
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Future work

v

Continuous parameters (currently discretised)

v

Statistical tests (cf. racing algorithms)

v

Learning approaches, sequential design of experiments

v

Per-instance tuning

v

Automatic algorithm design
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