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Abstract

Tuning an algorithm’s parameters for robust and high performance
is a tedious and time-consuming task that often requires knowledge
about both the domain and the algorithm of interest. Furthermore,
the optimal parameter configuration to use may differ considerably
across problem instances. In this report, we define and tackle the
algorithm configuration problem, which is to automatically choose
the optimal parameter configuration for a given algorithm on a
per-instance base. We employ an indirect approach that predicts
algorithm runtime for the problem instance at hand and each (con-
tinuous) parameter configuration, and then simply chooses the con-
figuration that minimizes the prediction. This approach is based
on similar work by Leyton-Brown et al. [LBNS02, NLBD+04] who
tackle the algorithm selection problem [Ric76] (given a problem in-
stance, choose the best algorithm to solve it). While all previous
studies for runtime prediction focussed on tree search algorithm,
we demonstrate that it is possible to fairly accurately predict the
runtime of SAPS [HTH02], one of the best-performing stochastic
local search algorithms for SAT. We also show that our approach
automatically picks parameter configurations that speed up SAPS
by an average factor of more than two when compared to its default
parameter configuration. Finally, we introduce sequential Bayesian
learning to the problem of runtime prediction, enabling an incre-
mental learning approach and yielding very informative estimates
of predictive uncertainty.

1 Introduction

The last decade has seen a dramatic rise in our ability to solve combinatorial op-
timization problems in many practical applications. Amongst the most important
reasons for this development are considerable advances in algorithms that exploit
special domain-specific characteristics. However, peak performance usually comes
at a loss of generality since the optimal search strategy differs across problem do-
mains. Moreover, state-of-the-art algorithms for combinatorial optimization, be
they based on tree search or local search, tend to have a fair amount of parameters
whose optimal settings differ on an instance-by-instance base.

Recent years have seen a number of approaches to construct portfolios of algo-
rithms that choose the algorithm that is expected to perform best for each problem
instance [LL98, LBNS02, NLBD+04, GHBF05]. There have also been a number
of approaches to automatically find the best default parameter configuration for a
single algorithm [KJ95, BSPV02, Hut04, SM05, ADL06].

However, to our best knowledge, there exist only precious little approaches for
configuring an algorithm’s parameters on a per-instance base automatically, that
is, taking into account the characteristics of the problem instance at hand and
past experience on similar instances. We call this problem the algorithm config-
uration problem. The only solution approach to this problem we are aware of is
the Auto-WalkSAT framework [PK01] which is confined to a small domain and
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does not perform well for all classes of SAT instances. In this report, we intro-
duce a general framework for solving the algorithm configuration problem. Our
approach is based on predicting the runtime of the parametric algorithm at hand
for all possible parameter configurations (in the case of continuous parameters there
are infinitely many), and to find a configuration that approximately minimizes this
prediction. When our runtime predictions are accurate, this configuration indeed
minimizes runtime. We show experimental results confirming that automatically
chosen instance-specific parameter configurations for a local search algorithm can
outperform its best overall parameter configuration.

We furthermore introduce the use of Bayesian techniques to the problem of
runtime prediction, which enables a simple incremental learning approach and more
importantly the quantization of uncertainty in our estimates of runtime. These
techniques widen the applicability of runtime prediction to include a number of
practically relevant scenarios.

Our contributions in this report are manifold, the most important ones being:

• We demonstrate that it is possible to predict the (median) runtime of local
search algorithms for SAT fairly accurately. Even though Leyton-Brown et
al. [LBNS02, NLBD+04] have demonstrated that the runtime of branch and
bound algorithms for SAT and other NP-hard problems can be predicted, to
this end no equivalent study was performed for local search.1

• We show how to predict the runtime of an algorithm with continuous parame-
ters and use this methodology to implement an effective and general approach
to solve the algorithm configuration problem.

• Using the above approach, we automatically tune the parameters of the stochas-
tic local search SAT algorithm SAPS [HTH02] on a per-instance base. This
achieves a reduction in runlength on unseen test instances by more than a
factor of two on average when compared to the SAPS default parameter con-
figuration.

• We employ a simple Bayesian approach to introduce incremental learning and
a quantization of predictive uncertainty to the field of runtime prediction,
widening its practical applicability considerably.

The rest of this report is structured as follows. Following a comprehensive dis-
cussion of related work in Section 2, the report is loosely split into two parts. In the
first part, Section 3 details the use of regression techniques in runtime prediction
and Section 4 demonstrates its applicability to predict the median runtime of local
search algorithms. Section 5 then shows how to predict the runtime for different
parameter configurations of an algorithm, and Section 6 applies this approach to
the SAPS algorithm. Part two covers a fairly independent extension of runtime pre-
diction methodology. It starts with some practical considerations about real-world
scenarios in Section 7, motivating incremental learning approaches that can deal
with multiple domains. Section 8 then gives the basics of sequential Bayesian linear
regression which is demonstrated in Section 9 to offer a solution to the problems

1Indeed, Kevin Leyton-Brown stated in personal communication that they have conducted
preliminary (and unpublished) inconclusive experiments that rather suggested runtime prediction
to be infeasible for local search algorithms.
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arising in the above real-world scenarios. Finally, Section 10 concludes the report
and gives pointers for future work.

2 Related Work

Over the last decade, a considerable number of approaches towards automated pa-
rameter tuning and algorithm selection have been proposed. We group these into
three distinct categories, namely approaches for finding the best default param-
eter configuration of a single algorithm across a set of given instances; portfolio
approaches that choose between several algorithms on a per-instance base before
actually running the algorithms; and approaches that alternate between different
problem solving strategies during the execution of an algorithm. We discuss each of
these approaches in detail in the following sections. Our present work on algorithm
configuration is most similar in spirit to the approaches for algorithm selection we
review in Subsection 2.2.

2.1 Finding the best parameter configuration for a problem

distribution

The most general problem in automated parameter tuning is to find the best (de-
fault) parameter configuration for a particular algorithm and problem domain. We
define the best default parameter configuration problem as the one that minimizes the
overall expected runtime (or maximizes overall quality in an optimization problem)
across the problem instances of a domain when the same parameter configuration
is to be used for all instances. There is an abundant number of applications for
algorithms that automatically find a good default parameter configuration, be it in
industry (where the default parameter configuration may vary for different problem
domains) or simply in algorithm development (where researchers spend much of
their precious time optimizing their algorithms’ parameters). Approaches that find
the best default parameter configuration have the potential to improve parametric
algorithms for any kind of problem. All that is required for this approach to be
applicable is a distribution over (or a set of) problem instances and a (possibly
black-box) parametric algorithm. However, it should be emphasized that a gen-
eral optimization tool will necessarily fall short of specialized optimizers which can
exploit knowledge about the problem domain and the algorithms to be optimized.

In this section we review a number of quite heterogeneous approaches for finding
the best default parameter configuration. When the heuristics employed by a CSP
solver are viewed as its parameters, automated parameter tuning for CSP solving
dates back to the MULTI-TAC system by Minton [Min93, Min96] . MULTI-TAC
requires as input a number of generic heuristics as well as a specific problem domain
and a distribution over instances. It adapts the generic heuristics to the problem
domain and automatically generates domain-specific LISP programs implementing
them. A beam search is then used in order to choose the best LISP program where
each program is evaluated by running it on a number of problem instances sampled
from the provided distribution.

There is a number of fairly recent approaches for automated parameter tuning.
These approaches are quite heterogeneous, but all of them optimize a certain ob-
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jective function that is implicitly defined via the performance of the algorithm on
a distribution of problems. Probably the biggest challenge in automatic parameter
tuning is the great number of possible parameter configurations to choose from.
Even if all algorithm parameters are discrete, there are exponentially many possi-
ble configurations, and since continuous parameters lead to an infinite number of
choices all approaches we are aware of discretize continuous parameters.2 In con-
trast, the approach we present in this paper works directly in the continuous space,
rendering discretization superfluous.

Birratari et al. [BSPV02] introduce a racing algorithm for configuring meta-
heuristics. This algorithm takes as input a finite number of parameter configura-
tions for an algorithm and a problem distribution. It runs the algorithm with each
single parameter configuration on a number of instances. After all configurations
have been run for an instance, a non-parametric statistical test is used in order to
filter out configurations that are significantly worse than others. This process is it-
erated until a cutoff time is reached and only a small number of good configurations
is left. Experiments with 256 different parameter configurations (all combinations of
4 continuous parameters discretized to 4 values each) show promising results in the
domain of the MAX-MIN ant system for solving the travelling salesman problem.

Hutter [Hut04] introduced an iterated local search (ILS) algorithm for auto-
mated parameter tuning, called ParamILS. Taking the same input parameters as
the above mentioned racing algorithm, ParamILS starts with some default param-
eter configuration and tries to improve it locally. This can be seen as performing a
greedy local search, where performance is measured by running the algorithm with
the respective configuration on a number of instances, and the objective function
combines the number of instances solved and time taken to do so. Once in a local
minimum of this implicit cost surface, a number of parameter values are perturbed
at random to arrive at a new starting point for a greedy local search. Interestingly,
ParamILS was used to tune the parameters of another ILS algorithm that solved
the most probable explanation problem in Bayesian networks. That ILS algorithm
had a large number of continuous and discrete parameters which led to over one
million possible discretized parameter configurations, rendering a racing approach
infeasible. ParamILS found parameter configurations that were considerably better
than the ones previously found manually.

The CALIBRA system [ADL06] combines fractional experimental design with a
local search mechanism. Being limited to at most five free parameters, it starts off
by evaluating each parameter configuration in a full factorial design with two values
per parameter. It then iteratively homes in to good regions in parameter space by
employing fractional experimental designs that evaluate nine configurations around
the so far best performing configuration. The grid for the experimental design
becomes finer in each iteration, which provides a nice solution to the automatic
discretization of continuous parameters. Once a local optimum is found and can-
not be refined anymore, the search is restarted (with a coarser grid) by combining
some of the best configurations found so far, but also introducing some noise for
sake of diversification. The experiments reported in [ADL06] show great promise
in that CALIBRA was able to find parameter settings for six independent algo-

2Only the fractional experimental design approach paired with local search in [ADL06] dis-
cretizes with increasingly fine levels of granularity. It thereby avoids many problems associated
with discretization.
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rithms that matched or outperformed the respective originally proposed parameter
configurations.

Finally, Srivastava and Mediratta [SM05] use a decision tree classification ap-
proach to classify the space of possible parameter configurations into good and bad
configurations for a domain. Neither instance-specific nor domain-specific char-
acteristics are part of the decision tree. Once more, all parameters are discrete or
discretized (which is here described as an advantage since by means of discretization
the algorithm can handle “diverse parameter types”) and the experiments cover sce-
narios with less than 200 possible parameter configurations. Their approach requires
the user to define a so-called performance criterion (such as “the algorithm solves
the problem within five minutes”). A training instance is then called learnable if the
performance criterion is met by some parameter configuration and missed by some
other one. Predictably, the typically large inter-instance variability in runtimes even
for uniform domains complicates this classification based on a fixed user-defined per-
formance criterion, already rendering a third of the training instances unlearnable.
Moreover, the complete learning process has to be repeated whenever the perfor-
mance criterion is modifed. The learned decision tree is used in order to choose
the presumably best parameter configuration for a domain by one of three possible
“ranking functions” which all aim at choosing a leaf in the decision tree with many
good and few bad configurations. Unfortunately, the experimental evaluation pre-
sented in [SM05] is completely inconclusive since the only comparison made is to the
worst performing parameter configuration, as opposed to the best performing one
or at least to the default parameter configurations all the tested algorithms come
with.

In summary of these recent approaches, there are three possibilities to handle the
exponential blowup in possible parameter configurations. Birratari et al. [BSPV02]
try to minimize the number of times an algorithm is run with poor configura-
tions. This can work if the number of possible configurations is fairly small and
the number of runs necessary to statistically distinguish good from bad parameter
settings is also small. The iterated local search by Hutter [Hut04] and the CAL-
IBRA system [ADL06] concentrate on well-performing regions of parameter space
and completely ignore regions that do not seem promising enough. This scales up
to much larger numbers of possible configurations, but there is a possibility that
an interesting region is missed alltogether.3 Finally, model-based approaches based
on machine learning try to represent the whole parameter space compactly. So far,
the only machine learning work for finding good default parameter configurations
we are aware of is the decision tree approach by Srivastava and Mediratta [SM05],
but this did not convince us yet. We plan to study the use of machine learning for
this problem closer in the future.

Some related work from the machine learning literature is presented in [KJ95].
In supervised machine learning, problems are very different than in combinatorial
optimization, the aim being to build a predictive model which is typically param-
eterized by a number of model parameters. These model parameters are fitted or
learned from a training data set, and it is very important not to confuse them with

3For many algorithms, there exist strong connections between the algorithm parameters which
may lead to symmetries in parameter space. In the presence of such symmetries, focussing on a
representative sub-region may actually be a very sensible strategy.
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the algorithm parameters we deal with in this paper.4 Model parameters are an
artifact which Bayesians would optimally like to integrate over, and even in classic
machine learning it does not make any sense to adapt these model parameters on a
per-instance base. However, it does make sense to separately fit model parameters
for distinct problem domains.

The objective in (classical parametric non-Bayesian) machine learning for many
data sets can be seen as finding the best parameter setting for each of the data
sets. In [KJ95], Kohavi and John demonstrate that it is possible to automatically
find good settings for the parameters of the popular decision tree learning algorithm
C4.5. The methodology they use is very similar to the ones applied for finding the
best default parameter setting for combinatorial search algorithms (cf. the above
mentioned iterated local search in parameter space in [Hut04]): for each of the 33
data sets they studied, they perform a best-first search in parameter space, where
each parameter setting is evaluated by running cross validation on the training set.
Their approach finds different good parameters for each of their data sets, and they
significantly outperform the overall best default parameter setting of C4.5.

To finalize the discussion of best default parameter configurations, we would
like to emphasize that this problem is a very worthwhile area of study due to its
generality. Note that automated parameter tuning in this setting is by no means
limited to search algorithms. In contrast, the problem formulation applies to any
field of algorithmic study where a set of arbitrary parameters needs to be set in order
to achieve the best overall performance on a distribution of problems. Unfortunately,
the performance of a single default parameter configuration depends heavily on the
homogenity of instances within a problem domain as well as on the sensitivity of
algorithms to their parameters. In Section 5, we introduce a novel approach that
tunes algorithm parameters conditional on the current instance to be solved. This
approach is more powerful than finding the best default parameter configuration,
but it is also less general since it requires some features to distinguish instances
from one another.

2.2 Algorithm selection on a per-instance base

Sometimes it is not easy to tell ahead of time which domain a particular problem
comes from. For example, if a SAT solver is used as a “General Problem Solver” to
solve problem encodings from a variety of domains, it may be regularly confronted
with SAT instances of unknown origin. Similarly, the problem modelling may change
over time such that even problem instances from the same domain can become very
heterogeneous.

In such a scenario, using only the single best algorithm for a domain will not lead
to peak performance. This is due to the fact that the more diverse instances are,
the more the optimal solution approaches tend to differ. The problem a practitioner
faces for each new problem instance is the algorithm selection problem [Ric76], that
is, given a problem instance to select the most appropriate algorithm to solve it.

4For readers with a background in Bayesian machine learning, it may help to view algorithm
parameters as decision variables that need to be instantiated, whereas model parameters are ran-
dom variables. Even in machine learning there are a number of algorithm parameters that need
tuning, even though they may be as trivial as the step size in a gradient descent optimizer or the
number of EM steps to be performed.
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Our work in this paper is very related to this problem, with the only difference
that we select one of infinitely many parameter configurations for a single algorithm
instead of selecting one of finitely many algorithms (with fixed parameter settings).

This section reviews a number of recent approaches for tackling the algorithm se-
lection problem. One simple yet effective approach goes back to Donald Knuth [Knu75]
who proposed to estimate the efficiency of backtrack search algorithms with the fol-
lowing Monte Carlo approach. First, sample a number of paths from the root of
a search tree to some of its leaves by uniformly sampling a branch at each choice
point. Appropriately weighted, these sampled paths can yield an estimate of the
size of the search tree or the time necessary for a complete traversal. Lobjois and
Lemâıtre [LL98] build on this work in order to estimate the same quantities for
Branch and Bound algorithms for Max-CSP with various propagation methods.
For each of a number of algorithms, they sample search trajectories by picking
branches uniformly at random. However, in contrast to Knuth’s method, they per-
form algorithm-specific propagations upon instantiation of a variable and keep track
of the upper bound on solution cost (where the objective is to minimize cost), cut-
ting off branches whose cost already exceeds the upper bound. For some problem
instances, costly propagations pay off due to a massive reduction of the size of the
explored search tree, whereas for other instances, additional propagations simply
pose an overhead. Exactly this difference can be detected and exploited automat-
ically by Lobjois’ and Lemâıtre’s method: for each algorithm, they compute an
estimate of runtime by multiplying the estimated size of the search tree with the
estimated time spent in each node. They then run the algorithm with minimal
expected runtime. Their experiments with four Branch and Bound algorithms show
that this method, which they call Selection by Performance Prediction(SPP), is for
most instances only a bit slower than the optimal algorithm for that instance, and
that SPP outperforms every single algorithm on average. However, SPP is only
applicable for tree search algorithms and requires access to and modification of the
algorithms’ source codes.

A quite related approach is presented in the work of Leyton-Brown et al. [LBNS02,
NLBD+04]. For each algorithm of interest, they build a so-called empirical hardness
model, which predicts the algorithm’s runtime given a problem instance. Amongst
others, empirical hardness models can be used for algorithm selection by simply
choosing the algorithm with lowest predicted runtime. They are based on super-
vised machine learning, more precisely linear regression, and are applicable whenever
meaningful features are available for the domain of interest that can be computed
quickly and that are predictive of runtime. Apart from being more general, this ap-
proach differs from SPP in that it uses identical features to predict the performance
of different algorithms. An empirical hardness model for a tree search algorithm
could easily include the two features SPP uses (predicted size of search tree and
cost per node) on top of other features. This would likely improve accuracy of the
hardness model somewhat (it would very likely outperform SPP), but this has not
been done so far, probably in part because Leyton-Brown et al.’s research focussed
on black-box algorithms for which SPP features are not computable. Since our work
on algorithm configuration builds on the one by Leyton-Brown et al. we detail their
approach in Section 3.

Another method for algorithm selection by Gebruers et al. [GHBF05] comes
from the field of case-based reasoning, a supervised classification method. Instead
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of predicting the runtime for each algorithm using regression, this method simply
classifies problem instances according to which algorithm should best be used to
solve them. This discriminative method does not suffer the overhead of having to
predict runtime, which may be quite a challenging task. In contrast, it can directly
model the decision boundary, which may be much simpler. However, the indirect
approach via predictions of runtime has a number of very appealing advantages.
Firstly, having an estimate of an algorithm’s runtime can be useful in its own right,
for example in a larger automated reasoning system that can allocate resources
depending on expected problem hardness. Predictions about the runtime can also
be interesting in scientific discovery when we try to find out what makes problem
instances hard. Secondly, if runtime prediction is slightly off then the best algorithm
may still be selected since runtime predictions only need to be accurate in a relative
sense when solely used for selecting the best algorithm. Mistakes are more likely
when two algorithms’ runtimes are very close, such that mistakes are more likely
when they don’t really matter. On the other hand, when an algorithm performs very
poorly for an instance, only a great prediction error can lead to it being predicted
to be the best algorithm – an unlikely situation. Thirdly, probabilistic estimates,
decision theoretic concepts, active learning and the like are more straight-forwardly
integrated in the runtime prediction setting. We do indeed implement probabilistic
estimates in this paper and plan to implement the other concepts in future work.
Furthermore, runtime prediction is much more suitable in an incremental learning
scenario because runtime predictions can already be improved from the execution of
a single algorithm on a new instance. On the other hand, classification algorithms
need to run many if not all algorithms on a new instance in order to subsequently use
it as a training example. Finally, runtime prediction yields independent predictors
for each algorithm which remain unchanged when new algorithms join the portfolio.
In contrast, classification algorithms would have to relearn everything from scratch
in this case.5

This Section so far dealt with methods to solve the algorithm selection prob-
lem. In this paper, we apply similar techniques to solving the algorithm con-
figuration problem. The only other solution approach to the algorithm config-
uration problem we are aware of is the Auto-WalkSAT algorithm by Patterson
and Kautz [PK01]. This approach builds on work on invariants in local search
by McAllester et al. [MSK97]. That paper performed repeated runs of WalkSAT,
studying the mean and standard deviation of the resulting solution qualities and in
particular the ratio of the two, which they dubbed the invariant ratio. They showed
empirical evidence that the optimal noise parameter settings for algorithms in the
WalkSAT family tend to be close to the noise setting that minimizes the invari-
ant ratio, plus 10%. Auto-WalkSAT exploits this property by explicitly searching
for the noise setting that approximately minimizes the invariant ratio, and simply
using this noise setting plus 10%. This very simple algorithm performs well for a
large range of instances, finding different noise settings close to the optimal one for
random, circuit test, graph colouring and planning problems. However, in the case
of logistics problems, the optimal noise parameter setting is the noise setting that

5It may be possible to devise a scheme to only compare new algorithms against the so-far
best algorithm for each problem instance, but this would mean having to construct and main-
tain a large number of pairwise classificators, which is clearly undesirable both conceptually and
computationally.
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minimizes the invariant ratio minus 30%, such that Auto-WalkSAT performs very
poorly. Unfortunately, the relationship between invariant ratio and optimal noise
setting is a purely empirical one, which does not hold for every instance type, as is
demonstrated by its failure in the logistics domain.

Nevertheless, Auto-WalkSAT demonstrates that in well defined special domains
it is possible to construct mechanisms that automatically and directly select a good
performing parameter configuration for each problem instance. One can imagine
a more involved machine learning algorithm that employs many instance features
(such as the ones we use in this paper, but also the invariant ratio), to directly pre-
dict a good or even optimal parameter configuration for each instance. This direct
approach may perform better than our indirect approach via runtime prediction
since the functions to learn may be easier and since correlations between features
and optimal parameter values (such as the one used in Auto-WalkSAT) can be
exploited. On the other hand, more than one algorithm parameter and different
types of parameters may complicate direct predictions. This is because correlations
between the various parameters must be captured to find the best joint configu-
ration of parameters, and because we are not aware of any off-the-shelf machine
learning solutions with mixed discrete/continuous output. Further, the previously
mentioned advantages of runtime prediction also speak for this indirect approach,
which is why we chose to study it in this paper.

2.3 Online approaches

We distinguish our work on a priori algorithm configuration from a large class of
competing approaches, namely those that tune algorithm parameters during the
search. In the context of this paper, we also include algorithms in this class that
switch between algorithms during the course of the search. We refer to the problems
these algorithms are tackling as the online algorithm configuration and selection
problems as opposed to the above a priori variants in which one commits to using a
particular parameter configuration or algorithm before running the algorithm on an
instance. Obviously, the online variants have more potential than the a priori ones
since they are free to reactively exploit history information about what happened
in previous phases of the search. However, since many decisions have to be made
during the course of a search, the computational efficiency of the learning compo-
nent becomes an important issue, which leads to research focussing on simple and
often hard-coded “learning” rules that do not have much in common anymore with
traditional machine learning approaches (one exception is the promising and princi-
pled work on reinforcement learning for search). Our approach is to first establish a
solid baseline by tackling the less powerful but more general a priori algorithm con-
figuration problem by means of state-of-the-art machine learning approaches. We
hope that the lessons learned may carry over to help tackling the more complicated
problem of reactively tuning algorithm parameters and choosing algorithms.

A borderline case in our distinction between a priori algorithm configuration
and tuning parameters during the algorithm execution is the work by Horvitz et
al. [HRG+01]. They employ a decision tree to classify runs of a randomized algo-
rithm into long and short runs and exploit it by cutting off runs that are predicted
to be long, letting the others continue. This can considerably improve the average-
case performance of algorithms with heavy-tails. Even though this approach makes
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a decision during the execution of the algorithm (cut/continue), we do not really
view it as an online approach. This is due to the fact that it does not scale to draw-
ing multiple decisions during an algorithm run, unless one is willing to learn a new
predictor for each single decision to be drawn. In order to scale to the “real” online
case, one would like to learn a single classifier which can handle both features that
have been computed in the beginning of the search and in latter stages of the search,
either by extending the feature vector as the search progresses or by updating it.
Both approaches are somewhat problematic and scaling up to the “real” online case
with supervised machine learning techniques is an open research problem.

It is hard to attribute the improvements an algorithm incrementally achieves on
a problem during the course of the search to single decisions or series of decisions
made by the algorithm. This problem calls for the use of reinforcement learning. The
STAGE algorithm by Boyan and Moore [BM00] incrementally learns an function f(·)
that predicts for every search state s the quality of the local optimum region reached
by a basic local search method when started in s. STAGE alternates between such
local search phases and pertubation moves that lead the search out of locally optimal
regions and to states from which the next local search phase is predicted to reach
good local optima. For this perturbation, STAGE employs a secondary search over
search states that optimizes with respect to the learned function f(·), that is, with
respect to the predicted objective function value after the next local search phase.
Due to its alternation of local searches and pertubations, STAGE can be seen as
an iterated local search (ILS) algorithm [HS04] with a principled pertubation. The
original results presented in [BM00] were very encouraging, but unfortunately, we
are not aware of any follow-up work that showed STAGE to outperform state-of-
the-art metaheuristics, in particular ILS with simple random perturbations.

Lagoudakis and Littman [LL00] apply reinforcement learning to solve the algo-
rithm selection problem for each recursive subinstance of an order statistic and a
sorting problem.6 For the sorting problem, they demonstrate that their algorithm
automatically discovers that for large problems QuickSort performs very well while
small instances are more readily solved by InsertionSort due to a lower constant fac-
tor in complexity. Their learned algorithm combines the two sorting algorithms by
automatically choosing one of them based on the size of the subinstance. The choice
of QuickSort for a (sub)instance results in two subinstances for which the decision
between the two algorithms has to be made again. This process is iterated until
the subinstances are small enough to be predicted easier to solve with InsertionSort
than with QuickSort. This combined algorithm demonstrates very effectively that
different algorithms can be optimal in different phases of problem solving.

Lagoudakis and Littman also apply this methodology to the problem of selecting
branching rules in the DPLL procedure for SAT solving [LL01]. As in the above
order statistic and sorting problems, the only state information used in the rein-
forcement learning algorithm is instance size, in the SAT domain expressed as the
number of free variables. Experimental results show that for a variety of domains,
after a fairly involved training phase they recover the performance of the single best
branching rule for a test set from the respective domain by choosing one of the best

6In tree search algorithms, subinstances are the subtrees resulting from partial instantiations.
If one decision is made for each such recursive subinstance, this is a perfect example for the “real”
online case, whereas drawing only one decision per instance (and then sticking to this decision for
all sub-instances) would not qualify as such.
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(almost indistinguishable) branching rules at every node. They also show an exper-
iment on artificially constructed instances that consist of two disjoint subinstances,
one with 40 variables that allows for deep unit propagations, and one with 20 ran-
dom variables. For this type of instances, it pays off in the beginning (first 40 levels
of the tree) to use an expensive probing mechanism to select the variable assign-
ment that leads to the most unit propagations. For the last 20 variable assignments
(relating to the random subinstance), this strategy does not pay off and a simpler
but faster branching rule should be employed instead. Experimental results show
that this rule is recovered automatically by the reinforcement learning algorithm,
and that it thus clearly outperforms the single best branching rule per instance.
These results suggest that it is possible to outperform the single best algorithm for
an instance if one can find a compact state representation that still discriminates
between the possible actions. For the artificial instances in [LL01], instance size
alone suffices, but for general problem instances and the general online algorithm
selection problem this is an open research problem.

We now move on to a number of approaches that use simple and efficient es-
timators or heuristics to improve efficiency during tree searches for CSP. For the
problem of selecting the next variable to branch on in a CSP, Sillito [Sil00] uses
Knuth’s idea [Knu75] of estimating the size of the search tree by sampling (Lobjois
and Lemâıtre [LL98] already based their SPP algorithm on this idea – cf. Section
2.2). For each variable with small enough domain, he estimates the size of the com-
plete search tree when that variable is instantiated next, and then picks the variable
leading to the smallest predicted tree.

The quickest first principle(QFP) [BTW95] by Borrett et al. employs a number
of algorithms of increasing power but also increasing complexity. Simple instances
can often quickly be solved by simple strategies, while harder instances lead to
so-called thrashing of simple approaches, that is, extensive exploration of useless
subtrees. QFP exploits this idea by starting the search with a simple algorithm,
using a heuristic thrashing detector to cut off the algorithm and start a more complex
one once thrashing is detected. Experimental results suggest that this approach is
able to solve easy problems quickly and to reduce the so-called exceptionally bad
behaviour of algorithms by cutting them off once they begin to thrash.

In the setting of tree search for CSP, the Adaptive Constraint Engine (ACE) [EF01,
EFW+02, SLE04] by Epstein et al. uses a set of so-called advisors, heuristics that
vote for possible actions during the search. These votes are taken at every decision
point during the search and effectively compose the variable- and value-selection
heuristics of ACE. Weights for the advisors are learned after solving each problem
by examining the trace and appraising which choices were optimal. However, dur-
ing algorithm execution ACE’s strategies can still vary even if the advisor’s weights
do not change. Furthermore, depending on the ratio of instantiated variables, it
employs three distinct stages in the search for which different heuristics turn out to
be advisable. In the experimental analysis of [EFW+02], ACE considerably reduced
the number of backtracks necessary to solve a number of CSP instances, but the
frequent voting required considerable time such that the overall computational time
of ACE did not yet challenge straight-forward applications of standard heuristics.
The recent application of so-called fast and frugal reasoning [SLE04] (which more or
less amounts to repeating previous decisions without renewed voting) limited this
computational overhead.
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Low-knowledge algorithm control is an approach by Carchrae and Beck [CB04,
CB05] to build reactive algorithm portfolios for combinatorial optimization prob-
lems. Assuming all algorithms in the portfolio to be anytime algorithms that con-
tinuously improve a lower bound on solution quality, it distinguishes itself from
other approaches by using the development of solution quality for each of the al-
gorithms as its sole feature. This makes it very general since it does not depend
on any information about the domain under consideration and the particular al-
gorithms involved. It starts off by running each algorithm in the portfolio for a
given amount of time. Subsequently, it prioritizes the algorithms according to how
much they improved their respective incumbent solution in the past, which can be
seen as a type of learning by reinforcement (though it is quite different from main-
stream reinforcement learning). This process is iterated during the whole course of
the search, such that one never solely commits to a single algorithm7: an initially
strong algorithm will eventually be assigned less runtime once it yields diminishing
returns. This robustness paired with the algorithm’s generality make it an extremely
promising candidate for deployment in practice. Obviously, however, this general
approach cannot perform as well as specialized algorithms that take into account
the domain and algorithms under consideration. It would be very interesting to
extend the algorithm with the capability to use additional domain knowledge if this
is known anyways – this could lead to the best of both worlds: a well performing
general algorithm whose performance increases once domain-knowledge is taken into
account.

The local search community has developed a great variety of approaches for
adaptation in local search algorithms, some of which can be seen as tackling the
online algorithm configuration problem. The reactive search framework by Battiti
and Brunato [BB05] uses a history-based approach to decide whether the search is
trapped in a small region of the search space, and make a diversification move more
likely when trapped. For example, in reactive tabu search, the tradeoff between
intensification (more intensely searching a promising small part of the search space)
and diversification (exploring other regions of the search space) is made via the tabu
tenure, the number of steps for which a modified variable is tabu, that is, cannot be
changed again after a modification. When search stagnation is detected, reactive
tabu search increases the tabu tenure exponentially, and otherwise slowly decreases
it.

A very similar mechanism is used in an adaptive noise mechanism for WalkSAT
by Hoos [Hoo02]. Instead of the tabu tenure, Adaptive WalkSAT controls its noise
parameter. The noise is increased if no improvement in the objective function value
has been observed for too long a time, and it is decreased otherwise. Adaptive
WalkSAT Novelty+, introduced in 2002, is still amongst the best performing local
search algorithms for SAT.

A similar reactive variant has also been implemented for the SAPS algorithm
by Hutter et al. [HTH02] (the algorithm we use for our experiments in this paper).
Reactive SAPS, or RSAPS, adapts the probability of performing a smoothing step,
where smoothing corresponds to an intensification of the search. Since the optimal
parameter setting may change during the course of the search, in principle, this
strategy has the potential to achieve better performance than any fixed parameter

7Another advantage of this approach is that it lends itself nicely for parallelization. Iterated
sequential runs of all algorithms could also be implemented as threads with different priority.
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setting. In practice this is true for some instances, but overall, SAPS still shows
more robust performance with its default parameter settings than RSAPS.

Let us conclude this discussion of related work by reiterating that our present
work on instance-specific algorithm configuration addresses a problem related to,
but more powerful than the default parameter configuration problem covered in Sec-
tion 2.1. For this purpose, we use technology similar to the one used for the instance-
specific algorithm selection problem tackled by the approaches in Section 2.2. This
is less powerful but more general than the online algorithm selection or configuration
approaches covered in this Section. We hope to extend our probabilistic machine
learning approach to this setting in future work.

3 Empirical hardness models

In this section, we describe the concept of empirical hardness models as introduced
by Leyton-Brown et al. [LBNS02, NLBD+04]. In subsequent sections, we extend
this research in various directions.

Leyton-Brown et al. [LBNS02, NLBD+04] use a supervised Machine learning
approach to predict the runtime of various algorithms for combinatorial auctions
and SAT solving. In an offline training phase, each algorithm A of interest is run on
a representative training set of problem instances {s1, . . . , sN}. For each instance
sn, A’s runtime rA

n is recorded and a set of so-called features xn = [xn1, . . . , xnK ]T

is computed. These features are domain-dependent and can comprise a large variety
of instance characteristics. For example, in the SAT domain, [NLBD+04] employs
91 features, ranging from simple ones (such as the number of variables, clauses and
their ratio), to more complex ones, such as an estimate of the size of the DPLL
search space [LL98] and local search probes.

After collecting features xn and runtime rA
n for each training instance sn, a func-

tion fA(·) can be learned that, given the features xn of an instance, approximates
A’s runtime rA

n . This function f(·) can also be applied to the features of yet unseen
instances sN+1 to yield a prediction of the time A would take to solve it. The art
of machine learning is to learn functions on the training set that generalize well
to unseen instances (instances in the test set). [LBNS02, NLBD+04] refer to the
predictive function fA(·) as an empirical hardness model for the algorithm A, since
it models the empirical hardness of various instances for the algorithm.

In portfolio design based on empirical hardness models [LBNS02, NLBD+04], the
task is, given a portfolio of algorithms A = {A1, . . . , AP } to pick the best algorithm
A ∈ A on a per-instance basis. In order to achieve this, the above methodology
is applied for every algorithm A in the portfolio. In an offline training phase, a
separate function fA(·) is learned for each algorithm A, that, given the features xn

of an instance, approximates A’s runtime rA
n on that instance. After these functions

have been learned, they can easily be used to pick the presumably best algorithm
for solving a previously unseen problem instance sN+1. First, the features xN+1 are
computed; then, for each algorithm A, the function fA is evaluated on the instance
features xN+1, and the algorithm A∗ with minimal predicted runtime fA∗

(xN+1)
is chosen to solve the problem.

Different machine learning algorithms can be employed for this runtime predic-
tion problem. Although supervised classification algorithms can be employed to
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classify runtime into several bins (e.g., short, medium, and long), this approach has
important shortcomings, which are discussed in detail in [LBNS02, NLBD+04]. The
more intuitive alternative approach employed in [LBNS02, NLBD+04] is based on
supervised regression. A large variety of regression algorithms from the Machine
Learning literature can be used for this problem, each with its own advantages
and disadvantages. [LBNS02, NLBD+04] choose to employ the approach of lin-
ear regression, which is attractive due to a very low computational complexity for
training and prediction, as well as its conceptual simplicity and ease of implemen-
tation. Its main disadvantage is a comparably low predictive accuracy which may
be surpassed by more complex algorithms – however, Kevin Leyton-Brown stated
in personal communication that they tried more complex algorithms, to no avail.
Since we also restrict ourselves to (Bayesian) linear regression algorithms in this
paper, we cover linear regression in some detail in the following section.

3.1 Performance prediction with linear regression

This section covers the basics of linear regression and ridge regression, and will set
the stage for our subsequent Bayesian linear regression approach. This is standard
material covered in many articles and textbooks. We nevertheless include it here in
order to yield a self-contained report that is comprehensible without prior exposure
to Machine Learning. Our exposition is mainly based on [Bis06].

[NLBD+04] uses a simple Machine Learning technique called linear regression
that restricts the learned predictive functions f(·) to be linear:

fw(xn) = w0 +

K
∑

k=1

wkxnk,

where w = [w0, . . . , wk]T are free parameters of the function and we make the
function’s dependence on these parameters explicit by the subindex w. Note that
fw(·) is linear in both the features xn and the parameters w. This very simple
model may not be flexible enough to do accurate predictions since linear functions
of the features are not very expressive. However, the beauty of linear regression is
that it doesn’t actually require the target function to be linear in the features – all
that it requires is linearity in the parameters w. Hence, we can introduce a vector
of so-called basis functions φ = [φ1, . . . , φD] which can include arbitrarily complex
functions of all features xn of an instance sn.8 The linear regression model is then
formulated as

fw(xn) = w0 +
D
∑

d=1

wdφd(xn).

Note that the simple case of linear functions of the features is just a special case of
this general formulation: here, the number of basis functions D equals the number
of features K, and the dth basis function just picks the dth feature: φd(xn) = xnd.
Also note that the parameter w0 is not multiplied by a basis function. It serves
as an offset (or bias) parameter that is implicitly multiplied by a “dummy” feature
that is constantly 1. If we introduce a constant basis function φ0 = 1, we can write

8Linear regression with basis functions is also sometimes referred to as basis function regression.
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the linear regression model more compactly as

fw(xn) =

D
∑

d=0

wdφd(xn) = wT φ(xn),

where φ(xn) = [φ0(xn), . . . , φD(xn)]T . Remember, that in the context of em-
pirical hardness models we want the function fA

w
(xn) to be a good predictor for

the runtime rA
n of algorithm A on problem instance sn. This is achieved by fitting

the free parameters w such that fA
w

(xn) ≈ rA
n for all instances sn in the training

set. More precisely, w is set such as to minimize some loss-function. The standard
choice for this is mean squared prediction error (MSPE) on the training set:

lossls(w) =
1

N

N
∑

n=1

(fA
w

(xn)− rA
n )2, (1)

where the index ls stands for least squares. The minimization of this function
can be performed analytically as follows, leading to the globally optimal parameter
vector wls. Taking the gradient of lossls(w) with respect to w and equating to zero
yields the equation

N
∑

n=1

rA
n φ(xn)T −wT

(

N
∑

n=1

φ(xn)φ(xn)T

)

= 0.

Solving this for w directly yields the so-called normal equations for the least
squares problem:

wls = (ΦT Φ)−1ΦT rA, (2)

where rA = [rA
1 , . . . , rA

N ]T and we stacked the D + 1 basis functions for all N
training instances into the so-called design matrix Φ:

Φ =







φ(x1)
T

...
φ(xN )T






.

Thus, after a bit of algebra, finding the parameter vector wls of a linear model
that minimizes MSPE on the training set comes down to evaluating the term wls =
(ΦT Φ)−1ΦT rA (which can be implemented in 1 line of Matlab code). This process
is also referred to as training the linear model. The computational complexity of
this training procedure is very small: it is dominated by the cost of multiplying the
DxN matrix ΦT by the NxD matrix Φ (which will take time O(D2N)) and by the
inversion of the DxD matrix ΦT Φ (which will take time O(D3)). When reporting
results, it is often convenient to report the square root of MSPE; this is called the
root mean squared (prediction) error, RMSE.

At test time, A’s runtime on a yet unseen problem instance sN+1 can be pre-
dicted by simply evaluating the learned function fA

w
(·) at the features xN+1 of the

new instance. Since fA
w

(xN+1) = wT φ(xN+1), this evaluation simply computes the
inner product of two (D + 1)-dimensional vectors, which takes time O(D).

One problem of standard linear least squares regression is that wls may contain
excessively large weights. These large weights are the results of fitting some of the
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noise in the training data (also referred to as overfitting) and will lead to poor
generalization on new unseen test data. This problem can be easily dealt with by
minimizing an alternative loss function

lossridge(w) =
1

N

N
∑

n=1

(fA
w

(xn)−An)2 + λwT w, (3)

which penalizes large parameter values by adding a regularization term λwT w.9

Conveniently, the global optimum of this modified loss function can still be found
analytically. This is done in what is called ridge regression. In direct analogy to
the standard result for linear regression, setting the gradient of lossridge(w) to zero
and solving for w leads to the ridge solution

wridge = (λI + ΦT Φ)−1ΦT A, (4)

where I denotes the (D + 1)-dimensional identity matrix. Note that wridge is al-
most identical to wls, with the only difference that wridge adds a constant λ to
the diagonal of ΦT Φ before inverting it. Another frequently used motivation for
adding a small constant λ to the diagonal of the matrix is that there are otherwise
numerical problems with the inversion. In practice, the performance of ridge re-
gression depends strongly on the actual value of λ, with too low values leading to
overfitting (like in standard linear regression) and too large values leading to overly
flat functions that are not flexible enough to fit the data. Thus, in practice, the
regularization parameter λ must be carefully chosen via cross-validation.

3.2 Feature engineering for runtime prediction

In the last section, we stressed that linear regression functions only have to be
linear in the parameters and that arbitrary basis functions of all features can easily
be used. Leyton-Brown et al. [LBNS02, NLBD+04] exploit this and study several
alternative sets of basis functions. In the simplest case, they employ one basis
function per feature and thus learn functions that are linear in the features. They
also study the use of additional basis functions that consist of the pairwise products
of all input features. To be more precise, given K input features, the simple model
(which is linear in the input features) would employ K basis functions of the form
φk(xn) = xnk. The second type of model would additionally employ

(

K
2

)

basis
functions φd(xn) = xnixnj for all pairs of input features 〈i, j〉. Since this second
model effectively learns a quadratic function of the features, [LBNS02, NLBD+04]
refer to it as a “quadratic model”, whereas they call the first type of model “linear
model”. We will refer to both types of regression models as linear regression, just
with different basis functions.

Leyton-Brown et al. [LBNS02, NLBD+04] further employ extensive feature se-
lection methods in order to pick the most predictive basis functions from a large

9This loss function penalizes large weights quadratically. An alternative we do not cover here
it to penalize the absolute (non-squared) values of w. Such a penalty is chosen in lasso regression,
which leads to many of the parameters going to zero, effectively performing feature selection for
free. We plan to compare this approach against our current approaches for feature selection in
future work.
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set.10 The easiest example for feature selection is forward selection, which starts
off with an empty feature set and greedily adds features that maximally improve
performance.

In order to prevent overfitting, performance of a feature subset is measured by
training a model on the training set and evaluating its resulting root mean squared
error (RMSE) on a separate validation set. This validation set is usually taken to
be some held out part of the training set that is not used for training. In what is
called cross validation, the training data is partitioned into K folds of roughly the
same size, and this procedure is performed K times, each time using all but one fold
as training set and the remaining fold as validation set. The cross validation RMSE
can then be computed as the mean of the RMSEs for each of the folds; the standard
deviation of the RMSE in the folds can also be computed. Finally, the special case
where every data point is a fold by itself is called leave-one-out cross validation.
Compared to using only one validation set, cross validation has the advantage of
making better use of the possibly small training set, but it may also be prone to
overfitting if used to optimize several parameters.

[LBNS02, NLBD+04] employ a simple fixed split of the training set into train-
ing and validation set, and demonstrate that using small subsets of basis functions
already yields results comparable to using all of them. We observe a similar phe-
nomenon for our data.

4 Feasibility of empirical hardness models for SLS

algorithms

In this section, we show that empirical hardness models are not limited to com-
plete solvers but can also be learned for stochastic local search (SLS) algorithms.
This has never been demonstrated before, and indeed, Kevin Leyton-Brown stated
in personal communication that they conducted preliminary (and unpublished) in-
conclusive experiments that rather suggested the opposite. We start this section
by introducing the SAT domain and the SLS algorithm SAPS, and subsequently
show that we can predict the median runtime of SAPS on unseen instances quite
accurately.

4.1 Stochastic Local Search for SAT

So far, we have motivated our discussion with very general problem scenarios from
Constraint Programming (CP). While we see our approach as generally applicable,
we focus our experiments on a much smaller domain, namely a single stochastic
local search (SLS) algorithm for solving the propositional satisfiability (SAT) prob-
lem. This deserves some justification. Firstly, we restrict our initial experiments
to the SAT domain since SAT is the prototypical and best studied NP-hard prob-
lem [HS04, TH04]. While SAT algorithms tend to be simpler and cleaner than algo-
rithms for other NP-hard problems, SAT exhibits characteristics representative for
many combinatorial problems. Moreover, there exist an abundant number of freely

10Since these feature selection techniques operate on the basis functions directly, the term “basis
function selection” may be more appropriate, but we stick with the term feature selection since it
is the most commonly used term.
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available SAT instances, which is central in learning empirical runtime models with
the methodology of [LBNS02, NLBD+04]. Lastly, empirical runtime models have
already been studied for SAT, such that strong predictive features already exist and
need not be engineered from scratch [NLBD+04].

We chose the domain of SLS algorithms [HS04] since empirical hardness mod-
els have thus far not been learned for this important domain and we wanted to
study their applicability. Furthermore, SLS algorithms tend to be parameterized
algorithms whose performance depends crucially on a good parameter setting. An
automated way of parameter tuning will be an important contribution that promises
to significantly relieve researchers by handling the necessary engineering work in an
automated and principled fashion. Finally, we chose the SAPS algorithm [HTH02]
as one particular instance of SLS algorithms since for several reasons. Firstly, SAPS
is still amongst the state-of-the-art algorithms for many hard random SAT prob-
lems [HS04]. Secondly, SAPS has three continuous parameters that interact closely.
Finally, we have already seen evidence in the past that the optimal parameter set-
ting of SAPS is instance-dependent [HTH02], a fact that we exploit by setting its
parameters conditional on the instance characteristics.

SAPS is a dynamic local search (DLS) algorithm, that means it dynamically
modifies the evaluation function during the progress of the search. Like most DLS
algorithms for SAT, SAPS is a clause weighting algorithm, i.e. it assigns a weight
to each clause and at each step aims to minimize the sum of the weights of unsat-
isfied clauses. SAPS starts off by assigning a weight of one to each clause. After
this, it iterates weighted search steps and weight update steps. First, a series of
weighted search steps leads SAPS into a local minimum of the evaluation function,
i.e. a search state without neighbours with lower evaluation function value. SAPS’s
neighbourhood relation is a simple one-flip neighbourhood, i.e. two search states are
neighbours if and only if they differ in the assignment to exactly one variable. Once
in a local minimum, SAPS performs a weight update step, in which the weights of
all unsatisfied clauses are multiplied by a factor α > 1 (scaling). Afterwards, with
some probability Psmooth, all clause weights are smoothed towards their mean by
setting them to w ← w · ρ + (1 − ρ) · w, where ρ is a factor between zero and one.
The three quantities α, ρ, and Psmooth are the parameters, and their default setting
is 〈α, ρ, Psmooth〉 = 〈1.3, 0.8, 0.05〉. Intuitively, there is a strong interconnection be-
tween all these parameters. When α is high, the differences in clause weights grows
quickly, whereas when ρ is small they are smoothed out quicker (in the extreme
ρ = 0 all differences in clause weights vanish in a single smoothing step). The
connection between ρ and Psmooth is even stronger. As discussed in [HTH02], a
decreased smoothing probability Psmooth can be countered by a stronger smoothing
(i.e., a lower ρ). Due to this tight connection between Psmooth and ρ, we chose to
fix Psmooth to its default value 0.05 and only set α and ρ to their most promising
value for each instance automatically.

Since our experiments are restricted to the SAPS algorithm which cannot prove
unsatisfiability, we only employ satisfiable SAT instances. All benchmark instances
we employ can be found online. They represent three fundamentally different classes
of instances:

SAT04-random comprises all solvable random instances from the SAT04 competi-
tion. In the competition, SAPS solved 144 of the 150 instances, placing second
after a robust variant of WalkSAT Novelty+ with an adaptive setting of the
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noise parameter (AdaptNovelty+).

BIGMIX comprises 139 instances that were handpicked from the online repository
SATLIB11. They comprise uniform random instances, random instances with
controlled backbone size, backbone-minimal sub-instances, as well as encod-
ings of blocksworld and logistics planning, flat graph colouring, factorization,
inductive inference, and parity problems. One constraint in choosing instances
was that they be satisfiable and solvable by SAPS with default parameters
within one hour.

UF100 comprises 1000 hard uniform 3-SAT instances from the phase transition re-
gion. All instances in this set have been generated using exactly the same
random instance generator. Nevertheless, they differ in hardness (average
time typical solvers take to solve them) by up to two orders of magnitude.
This is the hardest problem class for an approach based on runtime prediction
because all instances are structurally very similar.

We now shift our attention from the data sets of interest to the features of
individual instances that we employ in order to predict empirical hardness on a
per-instance base.

BasicFeatures The 46 features in this feature set are a subset of the 91 SAT
features used in [NLBD+04]. They range from simple features (such as the
number of variables, clauses and their ratio) to more complex estimates of the
size of the DPLL search space [LL98] and some local search probes. We only
left out features which were constant for all instances, whose computation
took an unreasonably long time for some large instances (such as some cluster
graph-based features), or whose computation often failed alltogether (such as
the features based on linear programming).

SLSF This feature set comprises all the features in BasicFeatures, and twelve
more that are computed from multiple trajectories of the SAPS algorithm.
There are already some local search features in BasicFeatures that compute
characteristics of SAPS. We do not see a fundamental difference between our
features and those. Our intuition was, however, that additional features from
local search probes may be quite beneficial for predicting the runtime of local
search algorithms. Thus, we put in all additional features we expected to be
of potential use. The feature selection mechanism is then expected to detect
the really important features and thus, additional informative features should
at least not be harmful. The cost we pay for additional features is a slightly
longer training time (since the feature selection takes longer) and the cost of
computing the features for each instance.

Features based upon the SAPS algorithm may be more beneficial to predicting
SAPS behaviour than the behaviour of any other algorithm. They are thus
arguably not as general as most other features in BasicFeatures. However,
they have two advantages: firstly, since they may capture some of the dynamic
behaviour of the algorithm of interest on the particular instance of interest,
they are inherently more powerful than features which do not execute the

11http://www.satlib.org
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algorithm. Secondly, the dynamic features we compute are quite general in
that they can be computed for any local search algorithm for SAT. In order
to compute these twelve additional features, we run SAPS N = 10 times for
M = 1000 search steps each and gather the following statistics from each run:

Mean age of flipped variables The age of a variable is the number of steps
for which it has not been flipped, and if a variable has never been flipped
during a trajectory, its age is the total number of steps performed so far.
The statistic we use to describe a run is the age of variables at the time
when they are flipped, averaged over all flips of variables. Intuitively,
when the mean age of flipped variables is low, then the search concen-
trates on flipping a few variables often, that is, stays in a small part of
the search space. When it is large, intuitively, the coverage of the search
space is larger.

Percent local minima This statistic is just the number of local minima
encountered during a search trajectory, divided by the total number of
search steps. The same local minimum is counted multiple times if it is
visited multiple times.

Correlation length A trajectory s1, . . . , sm of m search states defines a se-
quence of objective function values g1, . . . , gm. For such a sequence with
m values, Hoos and Stützle[HS04] define the (empirical) autocorrelation
function as

r(i) =
1/(m− i) ·

∑m−i
k=1 (gk − ḡ) · (gk+i − ḡ)

1/m ·
∑m

k=1(gk − ḡ)2
,

where ḡ is the mean of g1, . . . , gm. The value r(i) is the empirical cor-
relation coefficient between the objective function values i steps apart
in the search trajectory. [HS04] states that for random trajectories, this
function typically decays exponentially as r(i) = e−i/l, where l is the (em-
pirical) correlation length (also known as autocorrelation length) and can
be defined as 1

ln|r(1)| if r(1) 6= 0. We use this quantity l as a statistic

despite the fact that our trajectories are highly non-random. If it is high,
this is an indication for a relatively smooth cost surface (even after taking
several steps, the objective function has not changed too much), whereas
if it is low the landscape is fairly rugged (i.e., even a few steps can lead
to large changes in objective function value).

Scaled version of correlation length We also include a scaled version of
the autocorrelation length as a feature, namely s = 1/(1− l).

For each of these four statistics, we compute the mean and median value across
the N runs, as well as the variation coefficient (standard deviation divided by
mean). These 12 values are added as additional features.

LLSF stands for “large local search features”, and this set contains the same features
as SLSF, with the one difference that the twelve dynamic features are com-
putationally less efficient but more precise estimates of the quantities under
question. Instead of 10 runs of 1000 search steps each in SLSF, LLSF executes
100 runs of 10000 steps each.
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The approach of runtime prediction we discuss in this report may further benefit
from some preprocessing on the SAT instances. For example, preprocessing has
been combined with SLS algorithms for SAT in [APSS05]. Next to making some
instances easier to solve, this preprocessing may reduce the problem instance to its
combinatorial core, rendering our automatically derived features more predictive of
problem hardness. We expect a future study of such effects to be quite illumniating.

4.2 Feasibility of runtime prediction for SLS algorithms for

SAT

In this section, we evaluate to which extent the previous approach of [LBNS02,
NLBD+04] generalizes to predict the runtime of SLS algorithms for SAT, in partic-
ular the SAPS algorithm. Remember that we only use satisfiable SAT instances, so
what we really study here is the hardness of the model finding variant for SAT.

In experiment 1, we demonstrate that empirical hardness models yield good
predictive performance for the median runtime of 1000 SAPS runs for each of our
data sets. This simply applies the linear regression software of Leyton-Brown et
al. [LBNS02, NLBD+04] as an off-the-shelf algorithm with default parameters. Sub-
sequently, we employ cross validation to tune the regularization parameter δ for our
domains to further improve results; experiments 2 and 3 do this for linear and
quadratic models, respectively. These two experiments aim at finding good default
settings for the regularization parameter and at comparing the power of linear and
quadratic models in our domain. Next, experiment 4 studies the impact of differ-
ent data normalizations, solely in order to make sure that we use the best possible
normalization for our domain. Finally, experiment 5 studies the improvements in
predictive performance when we use some additional local search features. We trade
off predictive accuracy and time needed for the feature computation, and pick one
instance feature set that will be used in all subsequent experiments in this report.

Experiment 1 (Applicability of runtime prediction for SLS algorithms). In this
experiment, we study the applicability of runtime prediction for SLS algorithms
for SAT, in particular for predicting the runtime of the SAPS algorithm with de-
fault parameter setting. We illustrate the predictive performance on our data sets
SAT04-random, UF100, and BIGMIX. Each data set was divided into three subsets:
a training set comprising 65% of the instances, a validation set with 15% of the
instances, and a final test set holding 20% of the instances. Since SAPS is a ran-
domized algorithm with exponentially distributed runtimes, we only aim to predict
the logarithm of median runtime over a number of N runs per instance. For each
data set, we thus ran SAPS N times on each instance of the training set, and learned
a function that predicts their median runtime given the instance’s features (here,
we employ feature set SLSF).

The resulting full models whose predictive performance we report on employs
all features that are not constant in the training set. We also evaluated the per-
formance of models learned on subsets of features. For each data set, in order to
construct a good feature subset, we ran forward selection on the training set and
evaluated the performance of the learned models on the validation set. We then
used the subset that achieved lowest overall validation set RMSE. For each data
set, features that were constant in the training set were dropped; for the data sets
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SAT04-random, UF100, and BIGMIX, there were six, twelve, and three such constant
features, respectively.

For data set SAT04-random, Figure 1(a) shows the predictive performance on
the testset obtained with a linear model employing the remaining 55 features (we
refer to models using all non-constant features as full models). Figure 1(b) shows
the performance of a linear model learned on an automatically constructed subset
of 22 features. Note that this subset model achieves significantly better accuracy
than the full model (RMSE 0.93 vs. 0.67). Also notice the strong correlation
(correlation coefficients 0.75 and 0.83) between actual and predicted runlength which
demonstrates our ability to predict median runlengths of SLS algorithms based on
previous performance. Although the median SAPS runlengths vary by over four
orders of magnitude across the test set, predictions of the subset model are typically
well within an order of magnitude of the actual runlength.

We now turn our attention to the data set UF100. All instances in UF100 have
the same number of variables and clauses and were generated with the same instance
generator. Thus, it does not come as a surprise that twelve out of the 46 features
were constant in the training set, and were thus removed. Although generated with
the same generator, hardness of the instances in in UF100 still varies by about two
orders of magnitude. As can be seen in Figures 1(c) (full model) and 1(d) (subset
model), the absolute predictive error is very low (RMSEs around 0.155), but we
observe a slight systematic trend that hard instances are predicted to be easier than
they actually are. Also note that for this data set, there is almost no difference in
the performance of the full model and the subset model.

Finally, we turn to what is arguably our hardest data set. BIGMIX is fairly small
and on top of this contains very heterogenous instances. It is thus to be expected
that runtime prediction will not be easy for this data set. Figures 1(e) and 1(f)
show the predictive accuracy of a full model and a subset model for this domain.
Note that this data set exemplifies overfitting in the full model which results in
very poor predictive performance, and that the subset model achieves much bet-
ter accuracy (full models can also achieve high performance, but need a stronger
regularization – we will revisit this issue in experiment 2). Notice that the perfor-
mance of the subset model is indeed quite good. Although the predictive accuracy
for the hardest instance is not good, it is clearly recognized as much harder than
the rest. Based on the very sparse training set, we cannot hope to do much better
performance. Also, the overall RMSE of the subset model (0.42) is remarkably low
and the correlation coefficient between predicted and actual runlength is very high
(0.93).

Since we saw evidence of overfitting in the previous experiment 1 (especially for
the data set BIGMIX, and since overfitting in linear regression can be countered by
an increased regularization, in the next experiment we evaluate the dependency of
cross validation and test error on the regularization constant δ.

Experiment 2 (Varying the regularization constant δ). Here, we employ cross-
validation to study the impact of the regularization constant δ on predictive perfor-
mance for each of our data sets. For this purpose, we merge training and validation
set. In K-fold cross validation, this set is then divided into K folds of equal size.
Each of these folds is used as a “test set” in turn, with the rest of the instances
divided into training and validation set at random in a ratio of 70-30. We report
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(a) Full model for SAT04-random, using all 55
non-constant features
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(b) Subset model for SAT04-random using 22
features
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(c) Full model for UF100 using all 34 non-
constant features
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(d) Subset model for UF100 using 19 features
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(e) Full model for BIGMIX using all 34 non-
constant features
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(f) Subset model for BIGMIX using 25 features

Figure 1: Predicted runlength vs. actual runlength for SAPS, using full models
and subset models on our three data sets. All models use feature set SLSF and
regularization parameter δ = 10−6. This plot belongs to experiment 1.
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the mean and variance of RMSE for each value of the regularization constant δ, and
for both the full and the subset model (as before, the size of the subset model is
adaptively chosen.). We also report the real test error (using the original training,
validation, and test sets) for each value of δ, but we do not tune with respect to
this value in order not to peek at the test set.

The results of this experiment are given in the upper half of Table 1. We ob-
serve that full models favour higher regularization parameters (around δ = 1) than
the subset models, which show best performance for values of δ around 10−2. Also
note that the subset models are very robust w.r.t. δ, whereas for two of the three
data sets(SAT04-random and BIGMIX) the full model only performs good for a small
range of δ. Due to this sensitivity of full models, we only consider (automatically
determined) subset models in subsequent experiments. We will also keep the regu-
larization constant of linear models fixed at a value of δ = 10−2.

Experiment 3 (Varying the regularizer for quadratic models). This experiment
repeats experiment 2 using quadratic basis functions. Again, we vary the regular-
ization parameter δ and for each data set report performance of the full quadratic
model and of an automatically determined subset model.

The result is presented in the lower half of Table 1. In particular, we notice that
predictive accuracy does not increase significantly when compared to the model
that only uses linear basis functions. Since the feature selection process and cross-
validation are quite computationally expensive, we disregard the use of quadratic
basis functions from now on.

Experiment 4 (Data normalization). In this experiment, we study the effects of
different normalizations on the data. One common normalization for continuous
data is to make it have zero mean and unit variance by subtracting the mean and
dividing by the standard deviation. A second normalization is a transformation of
the data to the unit interval [0,1] by subtracting the minimum and then dividing by
the maximum. Using linear basis functions, we employ leave-1-out cross validation
to study the effects of these normalizations compared to not normalizing the data at
all. Table 2 shows the results. The predictive accuracy achieved with the different
normalizations is almost indistinguishable, except in the case of data set BIGMIX

without normalization. In that case, the cross validation RMSE is huge, which
is due to a few very badly predicted data points. Thus, we conclude that, for
our data sets, normalization is not crucial but can prevent infrequent large errors.
Normalization to mean zero and unit variance is just as good as normalization to
the unit interval, and we perform the former one in subsequent experiments.

Experiment 5 (Importance of the employed features). In this experiment, we
evaluate how predictive accuracy varies if we use different feature sets. For each
combination of data set and feature set, we ran cross-validation in order to find the
best value of δ when an automatically found subset of the features were used. Table 3
shows the results. Interestingly, performance with feature set SLSF is not much
better than with feature set BasicFeatures, whereas using feature set LLSF leads
to big improvements. Only for data set UF100 is feature set SLSF significantly better
than feature set BasicFeatures, but LLSF performs even much better. Actually, for
this last data set UF100, we do not entirely trust our newly introduced local search
features. Remember that in order to compute the extra features in SLSF, we run
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δ SAT04-random BIGMIX UF100
K subset model full model K subset model full model K subset model full model

Linear basis functions

10−8 22 0.61 ± 0.12 0.92 ± 0.20 25 1.30 ± 2.44 6.09 ± 11.92 19 0.15 ± 0.01 0.16 ± 0.01
0.67 0.93 0.42 2.23 0.16 0.15

10−5 22 0.62 ± 0.10 0.80 ± 0.19 25 0.52 ± 0.28 3.15 ± 4.20 17 0.15 ± 0.01 0.15 ± 0.01

0.67 0.93 0.42 1.05 0.16 0.15

10−3 22 0.61 ± 0.13 0.74 ± 0.15 19 0.59 ± 0.40 0.86 ± 0.49 19 0.15 ± 0.01 0.16 ± 0.01
0.67 0.87 0.43 0.88 0.16 0.15

10−2 25 0.59 ± 0.08 0.70 ± 0.10 22 0.56 ± 0.36 0.66 ± 0.50 19 0.15 ± 0.01 0.15 ± 0.01

0.67 0.80 0.42 0.76 0.16 0.15

10−1 27 0.63 ± 0.09 0.65 ± 0.05 24 0.58 ± 0.28 0.51 ± 0.24 22 0.15 ± 0.01 0.15 ± 0.01

0.62 0.72 0.45 0.67 0.16 0.15

100 14 0.63 ± 0.11 0.60 ± 0.08 26 0.52 ± 0.28 0.46 ± 0.27 24 0.16 ± 0.01 0.15 ± 0.01

0.60 0.64 0.52 0.62 0.16 0.15

101 30 0.90 ± 0.25 0.92 ± 0.23 21 0.61 ± 0.30 0.65 ± 0.32 34 0.17 ± 0.01 0.17 ± 0.01
0.90 0.92 0.76 0.79 0.17 0.17

102 29 3.10 ± 0.36 3.11 ± 0.37 24 1.99 ± 0.29 2.00 ± 0.28 25 0.43 ± 0.01 0.43 ± 0.01
3.17 3.17 2.21 2.14 0.40 0.41

Quadratic basis functions

10−5 48 0.86 ± 0.33 1.22 ± 0.26 46 1.50 ± 2.19 1.27 ± 0.57 80 0.16 ± 0.01 0.43 ± 0.04
0.71 1.03 1.32 1.55 0.16 0.44

10−3 71 0.81 ± 0.29 1.09 ± 0.29 63 2.64 ± 5.83 1.88 ± 1.46 80 0.16 ± 0.01 0.41 ± 0.04
0.76 1.03 0.72 1.54 0.16 0.40

10−2 79 0.76 ± 0.13 1.13 ± 0.30 70 0.78 ± 0.50 1.39 ± 0.88 80 0.16 ± 0.01 0.34 ± 0.06
0.81 1.01 0.44 1.46 0.16 0.31

10−1 80 0.69 ± 0.17 0.87 ± 0.24 80 0.57 ± 0.37 1.12 ± 1.04 80 0.16 ± 0.01 0.22 ± 0.02
0.78 0.93 0.76 1.12 0.16 0.21

100 80 0.70 ± 0.18 0.80 ± 0.12 80 0.55 ± 0.25 0.66 ± 0.29 80 0.15 ± 0.01 0.18 ± 0.01

0.60 0.73 0.54 0.71 0.16 0.17

101 80 0.77 ± 0.19 0.76 ± 0.14 80 0.61 ± 0.40 1.06 ± 0.81 80 0.16 ± 0.01 0.20 ± 0.02
0.65 0.64 0.41 0.50 0.16 0.21

102 80 1.16 ± 0.28 1.06 ± 0.27 80 1.05 ± 0.19 0.95 ± 0.18 80 0.40 ± 0.01 0.47 ± 0.03
1.13 1.05 1.00 0.89 0.40 0.46

103 80 2.22 ± 0.42 2.06 ± 0.42 80 2.43 ± 0.31 2.34 ± 0.29 80 1.31 ± 0.05 1.29 ± 0.05
2.35 2.11 2.69 2.57 1.29 1.28

Table 1: Performance of linear models with linear basis functions (upper part) and
quadratic basis functions (lower part) for different values of the regularizer δ. For
each data and each value of δ, we give the size K of the subset model, as well as the
performance of the subset model and the full model. The performance is measured
by three numbers, namely the mean RMSE in 10-fold cross validation ± its standard
deviation across the 10 folds (top row), as well as the test error (bottom row). We
typeset the best cross validation results for each data set in bold face (the test set
cannot be used to tune parameters, we only use it to report results). The upper
part of this table belongs to experiment 2, the lower part to experiment 3.
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Mean zero, σ2 = 1 Between zero and one No normalization
Full model Subset model Full model Subset model Full model Subset model

SAT04-random 0.49 ± 0.35 0.45 ± 0.34 0.47 ± 0.36 0.45 ± 0.34 0.47 ± 0.34 0.46 ± 0.35
0.71 0.64 0.71 0.64 0.67 0.68

BIGMIX 0.36 ± 0.37 0.45 ± 0.91 0.36 ± 0.42 0.41 ± 0.49 1.29 ± 7.58 0.96 ± 4.49
0.71 0.39 0.71 0.39 0.39 0.36

UF100 0.20 ± 0.06 0.20 ± 0.06 0.20 ± 0.06 0.20 ± 0.05 0.21 ± 0.06 0.21 ± 0.06
0.20 0.20 0.20 0.20 0.21 0.21

Table 2: Predictive performance for different normalizations of the data. For each
normalized data set, a full linear model and a subset model were learned and eval-
uated with leave-one-out cross validation. We report the RMSE, averaged over all
cross validation folds and its standard deviation, as well as the test set RMSE. The
regularization parameter used was δ = 10−1. This table belongs to experiment 4.

BasicFeatures SLSF LLSF
δ N K Performance δ N K Performance δ N K Performance

SAT04-random 10−3 N 12 0.59 ± 0.10 10−2 N 25 0.59 ± 0.08 10−2 N 15 0.48 ± 0.07
0.64 0.67 0.53

BIGMIX 100 N 20 0.47 ± 0.30 100 N 26 0.52 ± 0.28 10−2 N 20 0.35 ± 0.19

0.53 or 10−5 0.52 0.29

UF100 10−8 N 25 0.21 ± 0.02 10−8 N 22 0.15 ± 0.01 10−8 N 26 0.06 ± 0.01

to 10−2 0.20 10−1 0.16 to 100 0.06

Table 3: Comparison of our different feature sets in terms of performance for all data
sets. For each data set and feature set, we ran cross validation in order to choose
the best value of δ. For each such combination, we report the total number N of
features, the number K of features chosen by the subset model and the performance
in terms of cross-validation RMSE mean and standard deviation (upper row) and
test set RMSE (lower row). For each δ, the subset of features to use was chosen
individually. This table is part of experiment 5.

SAPS 10 times for 1000 steps each. If SAPS successfully solves an instance during
this feature computation, it is in theory possible to encode its runtime until solution
in the local search features. This would lead to “cheating” in the runtime prediction:
first, SAPS solves the instance during the feature computation, say in 500 steps,
and then you predict SAPS to take around 500 steps. Since the SAPS runlength for
instance in UF100 lies between 100 and 4,000 steps, there is considerable potential
for such “cheating” behaviour. This is not the case for the other two instance sets
since the runlength there reaches up to many millions of steps (400 million steps for
the hardest instance in SAT04-random), such that instances can’t usually be solved
in the feature computation phase.

At this point, we have to note that the computation of the feature set LLSF (and
sometimes also SLSF) did take a long time for some large instances. Because of this
sometimes excessive computation, we did not use these new local search features
in subsequent experiments. However, we plan to study computationally bounded
ways of computing features such as the ones in LLSF. In experiment 5, we have seen
conclusive evidence that the new local search features in LLSF significantly improve
predictive performance.
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5 Automatic parameter setting based on empirical

hardness models

In this section, we demonstrate how to extend the previous approach for runtime
prediction by Leyton-Brown et al. [LBNS02, NLBD+04] (described in Section 3)
to predict the runtime of a single algorithm with various parameter configurations.
This generalization allows us to achieve an instance-specific parameter tuning for
any algorithm which can significantly outperform its best default configuration.

We have already seen how regression approaches can be employed in order to
predict the runtime of a given algorithm A on a given instance sn. In Section 3,
this was done by learning a function that maps sn’s features xn to A’s runtime
rA
n . More specifically, we introduced a vector of basis functions φ = [φ0, . . . , φD]T

and learned a parameter vector w = [w0, . . . , wD]T that, when multiplied with the
values of these basis functions for instance sn, yielded an approximation of A’s
runtime for this instance: fA

w
(xn) = wT φ(xn) ≈ rA

n . We saw that when we stack
the D + 1 basis functions for all training instances {s1, . . . , sN} into the Nx(D + 1)
design matrix Φ and collect all runtimes in the Nx1 target vector r, then the
parameter vector w of a ridge regression function can be found by Equation (4).
This parameter vector yields the optimal approximation Φw ≈ r in a regularized
least squares sense (see Section 3). Thus, all we have to do in the training phase is to
determine the appropriate basis functions, build the design matrix Φ and the target
vector r, and finally invoke Equation (4) to fit the parameters w. The test phase
is even easier. Given a new instance sN+1, we simply compute its basis functions
and multiply them with the learned weight vector w to get the predicted runtime
fA

w
(xN+1) = wT φ(xN+1) ≈ rA

N+1.
Having reviewed this regression approach, let’s start this section with a straight-

forward application of regression to picking the best parameter configuration for a
single algorithm on a per-instance base. This simple application is analogous to the
portfolio approach by Leyton-Brown et al. [LBNS02, NLBD+04] (see Section 3):
we basically treat an algorithm with P different possible parameter configurations
as P different algorithms. This simplistic approach may be beneficially applied to
algorithms with a small number of possible parameter configurations, but it does not
scale to many parameters or to the more interesting case of continuous parameters.
We mainly use this simple version to build intuition, and subsequently move on to
the automatic tuning of continuous parameters.

Say, we want to automatically set the parameters of some parametric algorithm
A to achieve peak performance on a per-instance base. Further say, there are P
possible configurations for A’s parameters with finite but possibly large C. (Note
that this can always be achieved by discretizing continuous parameters, but also
that the number of parameter configurations grows exponentially with the number
of algorithm parameters.) We denote algorithm A with parameter configuration
c as A[c]. In the case of a finite number C of parameter configurations c, the
methodology introduced in Section 3 applies directly as follows.

In the training phase, we run A[c] for each possible parameter configuration c on
each of the problem instances s1, . . . , sN and collect the runtimes rc = [rc

1, . . . , r
c
N ]T .

We also compute the features xn for each instance sn and stack their basis function
values φ(xn)T into the design matrix Φ. We then learn a linear function f c

w
that

maps features to runtimes, that is, we apply Equation (4) to fit the function’s
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parameter vector w. The resulting function is f c
w

(xn) = φ(xn)T w.
In the test phase, given a new instance sN+1, all that is left to do is to compute

the instance features xN+1 and the basis function values φ(xN+1), and to evaluate
the learned function fc

w
(xN+1) for each possible parameter configuration c. We can

then pick the configuration c∗ with the lowest predicted runtime f c∗

w
(xN+1).

However, there are significant shortcomings to this approach. We already hinted
on the most important problem, namely that there may be prohibitively many
possible parameter configurations. If there are L parameters each of which can take
M values there will be C = ML possible configurations. Especially in the case of
continuous parameters, M will be quite large if we want to discretize the parameter
space in a reasonably fine-grained fashion.

A large number of parameter configurations C leads to several problems for this
approach. Firstly, in order to learn a function f c

w
for each possible parameter config-

uration c, we need to run A[c] for each of the N training instances. For applications
with large C, large N or a large average algorithm runtime, this can be prohibitively
expensive. Furthermore, at test time one has to evaluate C functions which may be
expensive for large C and a large number of basis functions (albeit a single function
evaluation in linear regression only has complexity O(D), where D is the number
of employed basis functions). Finally, a last problem of the described simple ap-
proach is that it learns independent functions for the C parameter configurations,
making it impossible to use a known runtime of A[c] in order to inform the runtime
predictions for A[c′] for c′ 6= c.12

Our new approach for tuning continuous algorithm parameters naturally takes
care of these problems using a very simple method. Instead of learning a separate
function fc

w
(·) for each possible parameter configuration c, we learn a single function

gw(·, ·) that has c in its argument list. Given the set of features xn of an instance sn

and a parameter configuration c, g(xn, c) will yield a prediction of rc
n, A[c]’s runtime

on instance sn. The main advantage of this approach is that it can generalize to
yet unseen parameter configurations as well as to yet unseen instances. The details
of this approach are as follows.

In the training phase, for each training instance sn we run A with a set of
parameter configurations cn = {cn,1, . . . , cn,kn

} and collect the corresponding run-
times rn = [rn,1, . . . , rn,kn

]T . We also compute sn’s features xn. The key change to
the previous approach is that now the parameter configuration is treated similarly
to the features. We define a new set of basis functions (still called φ) whose domain
now consists of the cross product of features and parameter configurations. For
each instance sn and parameter configurations cn,j , we will have a row in the design
matrix that contains φ(xn, cn,j)

T , that is, the design matrix now contains nk rows
for every training instance. The target vector r = [rT

1 , . . . , rT
N ]T just stacks all the

runtimes on top of each other.

12Note that this contradicts our intuition gathered from manual parameter tuning. Think
of an algorithm A with a single continuous parameter b: if we observe the runtimes A[b] =
〈10s, 40s, 90s, 100s, 100s〉 for b = 〈1.1, 1.2, 1.3, 1.4, 1.5〉, respectively, these observed runtimes
should clearly inform our predictions of A[b = 1.6]. Intuitively, for a nicely-behaved parameter
b, a reasonable prediction for A[b = 1.6] would be something around 100s since runtime appears
to have levelled off at b = 1.4. Obviously, this is not the whole story, but at the very least, our
prior prediction should be somewhat modified in the light of the observed evidence. If we employ
separate independent functions for predicting A’s runtime with each parameter configuration, no
such modification of the prior prediction is possible.
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We then learn a single function g(·, ·) to predict A’s runtime given the features
of an instance and a parameter setting c. Once more, this comes down to the
application of Equation (4) in order to learn a parameter vector w. The final
function has the form gw(xn, c) = wT φ(xn, c). The test phase for this approach
is slightly more interesting than before. Given a new instance sN+1, one computes
its instance features xN+1 as usual, but in order to predict a runtime by evaluating
function gw(xN+1, c) one needs a parameter configuration c. The aim at test time
is to find the optimal parameter configuration c∗ for the new test instance, that
is, the parameter configuration that minimizes expected runtime. If the number
of possible parameter configurations is small, one can just evaluate gw(xN+1, p)
for every configuration. For a larger number of configurations, more complicated
methods need to be applied, such as gradient descent for continuous parameters.
It is important to note, though, that the evaluation function for this search is still
very cheap: since it only consists of an inner product of two (D + 1)-dimensional
vectors, it only takes time O(D). In particular, algorithm A does not have to be
executed at all during the course of this search.

Note that we have a lot of freedom in the training phase. The number kn of
parameter configurations picked for instance sn is not restricted to be constant
across different instances sn, and we are free to choose the parameter configurations
cn for each instance at will. Some choices of cn will yield more informative training
data than others, but how to maximize the utility of the training phase is an open
research problem. This question is closely related to the fields of experimental
design in statistics and active learning in machine learning. However, there are also
important differences, for example, that running an algorithm with a suboptimal
parameter setting is much more expensive than running it with its best parameter
settting. We plan to address these concerns in future work.

In summary of this section, we would like to stress that our approach does not
simply apply the methodology of [LBNS02, NLBD+04] to choose from a set of fi-
nite possible parameter configurations by building a predictive model fp for each
configuration separately, but that it builds one predictive model g that includes the
parameter configuration. This approach also works for an infinite number of possible
parameter configurations, removing the need for a discretization of continuous pa-
rameters. An equivalent approach to ours for algorithm selection would be to build
one predictive model for all algorithms that simply employs the used algorithm
as one of its features. Even though standard linear regression would cease working
upon inclusion of this categorical variable, hierarchical models [TJBB04, Jor06] that
share parameters could still be employed and promise to yield better performance.

6 Experiments for SAPS with automatic parame-

ter setting

In this section, we study how well empirical hardness models capture performance
differences with different parameter settings for the SAPS algorithm. Throughout
this section, we consider 16 different parameter settings, namely all combinations of
α ∈ {1.1, 1.2, 1.3, 1.4} and ρ ∈ {0.6, 0.7, 0.8, 0.9}. We also evaluate the performance
of a SAPS variant that automatically chooses between these parameter settings on
a per-instance base.
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(a) Varying α and ρ for UF100
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(b) Varying α and ρ for BIGMIX
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(c) Varying α and ρ for SAT04-random

Figure 2: True SAPS log median runlength vs. its algorithm parameters α and ρ
for all our instance sets. Medians are taken over 100 runs for UF100 and 10 runs for
the other instance sets. We plot the mean ± standard deviation across all instances
in the respective instances set.

6.1 Predictive accuracy for different parameter settings

In view of the experimental results for linear regression with linear and quadratic
basis functions in Section 4.2, we only use linear basis functions in the instance
features. However, since we do want to learn expressive models for the importance
of the parameter settings, we employ all multiplicative combinations of parameters
up to a power of four as basis functions. The resulting 4-th order polynoms in
parameter space performed better than linear and quadratic functions and were
more robust than 8-th order polynoms in experiments we omit. In order to be able
to learn instance-specific functions of the parameters, we also use basis functions for
all multiplicative combinations of the parameter monomials and the linear instance
features. For each experiment, we then employ the methodology sketched out in
Section 3.2 in order to choose a good subset of 40 basis functions for the respective
data.

Figure 2 demonstrates the dependence of the SAPS algorithm on its parame-
ters. This plot shows SAPS median log runlength for different parameter settings,
averaged over all instances in the respective instance set plus/minus one standard
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(c) SAT04-random

Figure 3: Log overhead in median runlength over the optimal parameter setting
on a per instance base for our three data sets. Medians are taken over 100 runs
for UF100 and 10 runs for the other instance sets. We plot the mean ± standard
deviation across all instances in the respective data set.

deviation. As we can see, the dependence on the parameters is not very strong for
instance set UF100, stronger for BIGMIX, and the strongest for SAT04-random. For
the latter one, average runlength across all instances differs by about one order of
magnitude depending on the used parameter setting.

Notice that the large error bars in Figure 2 are due to inter-instance differences.
In order to study how much the best parameter setting varies across instances,
Figure 3 shows the overhead over the best parameter setting for each instance,
averaged across all instances in the data set, plus/minus one standard deviation.
We notice that the overhead is very small for most parameter settings in the UF100

domain, and that the minimal overhead over the best parameter setting per instance
is also small for the two other data sets. For example, it is around 100.22 ≈ 1.66,
such that we can never hope to improve the best fixed parameter setting by more
than a factor of 1.66 for these data sets, not even with a perfect predictor that leads
to optimal parameter choices for each instance. We attribute this effect in part to
the coarse grid we laid over parameter space but mostly to the uniformity of our
data sets. Notice, however, that the best fixed parameter setting differs across our
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three data sets. We believe that if there was more variation in the instances to
be solved (as will be the case in most practical applications) there would also be
a higher variation in optimal parameter settings, leading to a larger possible gain
for an automatic parameter setting. In practice, our predictors will unfortunately
be far from optimal, further reducing possible speedups. As we will see, this is
especially true in our case since our training data is very sparse and noisy which
inevitably leads to imperfect predictions.

In the following experiment, we study to which extent our runtime predictions
capture SAPS’ dependency on its parameters on a per-instance base. We first show
that we can predict log median SAPS runlength with different parameter settings
on a per-instance base. In particular, the runtime predictions are such that the
actual best parameter setting is almost always amongst the best predicted ones.

Experiment 6 (Predictive accuracy with varying parameters). In this experiment,
we study how well we can predict SAPS runlength with varying parameter setting.
For each data set, we partitioned all instances into training, validation and test
sets in the ratio 70-20-10. For each instance in BIGMIX and SAT04-random, we ran
SAPS 10 times with each of the 16 parameter settings and recorded the median
of these runs. For data set UF100, we could afford taking the median of 100 runs.
Figures 4(a), 4(c), and 4(e) show the resulting predictive performance, plotting 16
data points for each instance.

In order to highlight the performance differences due to the parameter settings,
we distinguish instances by different colours and symbols in Figures 4(b), 4(d),
and 4(f). To prevent clutter, we only show a subset of test instances in these
figures, including the extreme cases of the easiest/hardest instance with respect to
actual/predicted runtime. From these figures, we see that predictive accuracy for
SAPS with varying parameter settings is fairly good for the homogeneous data sets
UF100 and SAT04-random and just acceptable for the small, inhomogeneous data
set BIGMIX. Extremely bad parameter settings are almost always predicted to be
the worst, even if the absolute runlength prediction is often off by a considerable
amount. The best parameter setting is almost always predicted to be among the
best and the best predicted parameter one is likewise very good in most cases.
Finally, there is a strong positive correlation between the predicted runtime and
actual runtime per instance.

In Figure 5, we show the runtime predictions for different parameter settings per
instance in more detail. For each data set, we show two instances, namely the easiest
and hardest instances in the test set (in terms of average log runlength across all
16 parameter settings). For each instance and each parameter setting, we show the
actual and predicted log runlength. Note that the predictions mimic the trend of
the actual log runlengths fairly accurately, even though they are sometimes shifted
by over an order of magnitude. Also notice the varying shapes of the predictive
function, both across and within instance sets. A very odd shape for the predictive
function can be seen in data set BIGMIX in Figures 5(c) and 5(d). The noisy training
data seems to suggest negative curvature in ρ for α = 1.4 (the curve furthest to the
right). Our domain knowledge prohibits such a prediction and in future work we
may try to restrict predictive functions to match our intuitions.13

13Note that such a task is not straight-forward since we can only control our predictive function
indirectly by means of its parameters. In a Bayesian setting, we may put an informative prior on
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(a) Full test set of UF100
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(b) Partial test set of UF100
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(c) Full test set of BIGMIX
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(d) Partial test set of BIGMIX
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(e) Full test set of SAT04-random
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(f) Partial test set of SAT04-random

Figure 4: Actual vs. predicted log runlength for SAPS with 16 different parameter
configurations for each instance in the respective instance set (α ∈ {1.1, 1.2, 1.3, 1.4}
and ρ ∈ {0.6, 0.7, 0.8, 0.9}). The plots on the left show all data points whereas the
plots on the right focus on a few instances, indicating each one by a different colour
and symbol. For BIGMIX and SAT04-random, we used the median of 10 runs, for
UF100 the median of 100 runs. Note that for the SAT04-random data set, runs were
terminated when the runlength exceeded 109 steps. In the figure titles, we give the
correlation coefficient between predicted log runlength and actual log runlength for
the 16 parameter settings of each instance, more specifically its mean plus/minus
one standard deviation across all instances.
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In summary of experiment 6, we can say that the predictive accuracy for SAPS
with varying parameters is acceptable and performance trends are well captured
even if the absolute prediction is somewhat off. This is underlined by the strong
correlation of actual and predicted log runlength per instance with varying parame-
ter settings. We would like to stress that the imperfect absolute predictive accuracy
is likely due to a fairly low amount of training data. We will strive to improve this
base level performance in future work. We plan to increase both size and quality of
our training data by running more experiments with more runs. This will lead to an
improved predictive accuracy which will in turn enable us to pick better parameter
settings yielding larger speedups.

However, the fact that the best predicted parameter setting is almost always
among the actual best ones is already encouraging and we will now study whether
this can be exploited to achieve good performance with an automatic parameter
setting.

6.2 Performance of the automated parameter setting

In this section, we study whether the tolerable predictive accuracy for SAPS with
varying parameter settings enables us to automatically select a good parameter
setting on a per-instance base. We study the performance of an automatic parameter
setting that was learned on a training and validation set that comes from the same
data distribution as the test set.

Experiment 7 (Performance of the automatic parameter setting). In this exper-
iment, we use the same training, validation and test sets as in experiment 6. For
each instance in the respective test set, we compare the performance of the best
predicted parameter setting against a number of other parameter settings. In Fig-
ure 6, we plot the performance of our automatic parameter setting pauto versus the
performance of the best and the worst parameter setting for each instance (called
pbest and pworst, respectively). For instance sets UF100 and especially SAT04-random,
pauto yields performance that is close to optimal for each instance, whereas perfor-
mance for BIGMIX is worse. We attribute this to the small size of its training set
combined with a lack of uniformity.

While these results, especially for the case of SAT04-random, are very encour-
aging, we need to put them into perspective. In Figure 3, we have already alluded
to the fact that SAPS performance with the best fixed parameter setting comes
within a factor of 1.66 of the optimal performance for each instance. As it turns
out this is very close to the performance of our automatic parameter setting pauto.
Table 4 compares the performance of pauto against the performance of the following
parameter settings: the best and the worst parameter settings pbest and pworst for
each single instance, the SAPS default parameter setting pdef = (〈α, ρ〉 = 〈1.3, 0.8〉),
the best fixed parameter setting p∗

train
for the merged training and validation sets

and the best fixed parameter setting p∗
test

for the test set. In accordance to what
we saw in Figure 6, pauto performs almost as well as pbest, and far better than pworst.
It also clearly outperforms the SAPS default parameter setting pdef for data set
SAT04-random, beating it by a factor of 100.44 ≈ 2.75. For this data set, pauto even

the parameters for certain basis functions, but this is complicated by the fact that there are many
relevant basis functions that interact in highly non-trivial ways.
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(a) Easiest instance in UF100 test set
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(b) Hardest instance in UF100 test set
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(c) Easiest instance in BIGMIX test set
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(d) Hardest instance in BIGMIX test set
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(e) Easiest instance in SAT04-random test set
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(f) Hardest instance in SAT04-random test set

Figure 5: Actual vs. predicted log runlength for SAPS with 16 different parameter
configurations for the easiest and hardest instance in the test set of each instance
set (in terms of average log runlength across all 16 parameter settings). Again, we
used the median of 10 SAPS runs for training and validation, but plot the median
of 100 SAPS runs to reduce noise. Note the shift in y-axis, both across and within
instance sets. For SAT04-random, actual median runlengths higher than 109 are
plotted as 109.
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(a) Test set performance for UF100
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(b) Test set performance for BIGMIX
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(c) Test set performance for SAT04-random

Figure 6: Actual log runlength with an automatically chosen parameter setting vs.
actual log runlength with the best and worst parameter settings for each single
instance. Training, validation and test sets are the same as in experiment 6 and we
only report results on the test sets. Note the difference in scales for the different
instance sets.
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slightly outperforms the best fixed parameter setting p∗
test

for the test set. Note that
this means that in this domain our automatic choice of parameter setting outper-
forms any fixed parameter setting! For data set UF100, pauto ties with p∗

test
whereas

for data set BIGMIX, it performs worse. We attribute this in part to the consistently
strong performance of the best fixed parameter setting (as shown in Figure 3). In
the case of BIGMIX, it does not come surprisingly that an optimal fixed parameter
setting outperforms pauto which was learned from very noisy and sparse data. We
expect that with more and qualitatively better training data, predictive accuracy
will improve, leading to a better performance of our automatic parameter setting.
Finally, a wider range including the minimum for each instance would also improve
the performance of our automatically chosen parameter setting while leaving the
performance of the best fixed parameter setting unchanged.

We would like to stress the fact that for data set SAT04-random, our automated
parameter setting outperforms the best fixed parameter setting p∗

test
. This is a very

hard problem since p∗
test

is on average only a factor of 1.66 away from the optimal
parameter setting for each instance. In our approach, small prediction errors lead
to the choice of suboptimal parameter settings for some instance which leads to an
overhead of 100.17 ≈ 1.47 over the optimal parameter setting per instance, leaving
an average improvement over p∗

test
by a factor of 100.06 ≈ 1.14.

Apart from tuning parameters on uniform data sets, we see two further practical
applications of our approach. The first application is when the test set is not
uniform, for example combining random and structured instances or instances from
different applications. In these scenarios, there may not be a single well-performing
parameter setting, such that any fixed parameter setting will compare poorly to
the optimal parameter setting for each instance. In the same scenario, we still
expect our automatic parameter setting to work very well, outperforming any fixed
parameter setting by a larger margin than for uniform domains. We plan to study
this scenario in more detail in future work. Our approach can also be applied
when the test domain is not known a priori and we can only train on the instances
available to use beforehand. We detail this scenario in the next section.

6.3 Performance of the automated parameter setting on do-

mains different from the training domain

In this section, we study the performance of our automated parameter setting for the
case where we train on instances from one distribution and test on instances from
a different distribution. Note that this scenario is highly non-standard in machine
learning since we loose any statistical guarantess, but that it may be very important
in practical applications of automatic parameter setting.

When the test domain is not known a priori we cannot use a similar set of
instances to determine the best fixed parameter setting. All that is available for
parameter tuning is a training set of instances which may be considerably different
than the training set. The most sensible option for choosing a fixed parameter
setting is then to simply select the parameter setting p∗

train
that performs best on

the training set. In a machine learning approach, the best option is to train and
validate on disjoint subsets of the training set and hope that the learned function
will be general enough to yield reasonable predictions for different distributions as
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Statistics UF100 BIGMIX SAT04-random SAT04-random

trained on BIGMIX

p
∗

train 〈1.4, 0.6〉 〈1.3, 0.7〉 〈1.2, 0.5〉 〈1.3, 0.7〉

p
∗

test 〈1.4, 0.6〉 〈1.3, 0.7〉 〈1.2, 0.6〉 〈1.2, 0.5〉

Corrcoeff per instance 0.85 ± 0.10 0.47 ± 0.32 0.62 ± 0.38 0.54 ± 0.29

Log overhead over pbest 0.08 ± 0.07 0.32 ± 0.22 0.17 ± 0.17 0.28 ± 0.23

Log speedup over pworst 0.45 ± 0.27 0.75 ± 0.43 1.39 ± 0.90 1.25 ± 0.88

Log speedup over pdef 0.01 ± 0.07 −0.01 ± 0.32 0.44 ± 0.50 0.37 ± 0.54

Log speedup over p
∗

train −0.00 ± 0.04 −0.10 ± 0.28 0.07 ± 0.17 0.19 ± 0.40

Log speedup over p
∗

test −0.00 ± 0.04 −0.10 ± 0.28 0.06 ± 0.22 −0.04 ± 0.19

Table 4: This table reports on 4 experiments. For our three standard data sets, we
learn an adaptive parameter setting on the respective training and validation sets
and test it on the test set. The fourth experiment trains on the merged training
and validation sets of BIGMIX, using the test set of BIGMIX for validation and all
instances in SAT04-random as test set. For each experiment, we report the optimal
fixed parameter setting p∗

train
on the merged training and validation sets, the optimal

fixed parameter setting p∗
test

on the test set, and the correlation coefficient between
the actual and predicted log runlength for all parameter settings per instance in the
test set. We further compare the performance of SAPS with automatic parameter
setting pauto against the best and the worst parameter settings pbest and pworst for
each single instance, the SAPS default parameter setting pdef = 〈α, ρ〉 = 〈1.3, 0.8〉,
the best fixed parameter setting p∗train for the merged training and validation sets
and the best fixed parameter setting p∗test for the test set. Note that the performance
differences are stated in log space. For example, “Log overhead over pbest = 0.08±
0.07” means that SAPS with automatic parameter setting is on average 100.08 = 1.20
times slower than the optimal parameter setting for each instance.
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well.14

We now report on an experiment for this scenario. We trained on data set BIGMIX
but tested on data set SAT04-random. Note that this experiment is motivated by
the fact that the SAPS algorithm could have performed better in the SAT 2004
competition with a better setting of its parameters.15. All instances in BIGMIX were
freely available online long before the competition. Thus, we could have trained
on these instances in order to learn a predictor for runlength (or runtime) to be
employed for an automatic choice of parameters. We now demonstrate that this
approach would have improved SAPS performance both compared to its default
parameters and to the best choice of parameters for the training set. Figure 7
shows that the absolute predictive accuracy is very weak in this case (this does
not come surprisingly since training and test set distribution differ significantly).
Note, however, that the correlation between predicted and actual runtimes for all
16 parameter settings per instance is still considerable (correlation coefficient 0.54).

Even though the absolute predictive accuracy is very weak, the best predicted
parameter setting tends to perform quite well. Indeed, it is good enough to clearly
outperform the SAPS default parameter setting 〈α, ρ〉 = 〈1.3, 0.8〉 by a factor of
100.37 ≈ 2.34 and the best fixed parameter setting for the training set 〈α, ρ〉 =
〈1.4, 0.6〉 by a factor of 100.19 ≈ 1.54. We detail this comparison in the scatter
plots in Figure 8. Encouraged by these results, we plan to submit algorithms with
built-in automatic tuning to future SAT competitions.

As a note of caution, however, we have to add that performance in this experi-
ment was quite sensitive to the split of data set BIGMIX into training and validation
set, and that with a different split, we only got a marginal speedup. This noisy
effect is almost certainly due to the small size of BIGMIX and future experiments
will include many more instances, especially for such heterogeneuous instance sets
as BIGMIX.

14Obviously, in such a scenario one would choose a machine learner with excellent generalization
performance and regularize it strongly to avoid any kind of overfitting. There also exist Bayesian
methods to at least quantify the uncertainty in our predictions for new instances. These methods
can implicitly evaluate whether or not a test instance is similar to the training instances and if it
is highly dissimilar assign a high uncertainty to the runlength prediction. We will use one of these
methods, Bayesian linear regression, in Section 8.

15SAPS placed second for solving random instances, only beaten by a variant of WalkSAT
Novelty+, but with the improvements made here could have placed first. However, this method-
ology is equivalently applicable to WalkSAT Novelty+, and we plan to study this in future work.
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(a) Full set SAT04-random as test set
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(b) Partial set SAT04-random as test set

Figure 7: Actual vs. predicted log runlength for SAPS with 16 different parameter
configurations (α ∈ {1.1, 1.2, 1.3, 1.4} and ρ ∈ {0.6, 0.7, 0.8, 0.9}) for each instance
in SAT04-random. The plot on the left shows all data points whereas the plots on
the right focusses on a few instances, indicating each one by a different colour and
symbol. For training, we used the merged training and validation set of BIGMIX, for
validation the BIGMIX validation set, and for test the data set SAT04-random. Due
to the large difference between these two data sets, the poor absolute performance
does not come surprisingly. For all of these sets, each data point is the median of 10
runs. Note that runs were terminated when the runlength exceeded 109 steps. In the
figure titles, we give the correlation coefficient between predicted log runlength and
actual log runlength for the 16 parameter settings of each instance, more specifically
its mean plus/minus one standard deviation across all instances. Even though the
absolute error is very high, this correlation is fairly high.
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(a) SAPS with automatic parameter setting
vs. SAPS with default parameter setting
〈α, ρ〉 = 〈1.3, 0.8〉 for SAT04-random
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(b) SAPS with automatic parameter setting
vs. SAPS with best fixed parameter setting
〈α, ρ〉 = 〈1.4, 0.6〉 on the training set BIGMIX

Figure 8: Actual log median runlength for SAPS with automatically chosen param-
eters vs. default parameters and the best parameter setting on the training set.
The automatic parameter choice was trained on the merged training and validation
set of BIGMIX and validated on the test set of BIGMIX.
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7 Real-World Problem Settings

This section relates automated parameter setting to the reality of problem solving
in industrial settings. We distinguish between two scenarios. In the first scenario,
which is implicitly assumed by many previous approaches, the solver is continuously
used to solve problems from a single comparably uniform problem domain. In
contrast, in the second scenario the problem solver faces problem instances with
significant differences. These differences may either be due to the use of the solver
as a general problem solving tool across different groups, or it may be due to changes
that occur in the problem modelling. We argue that most previous approaches will
have problems to adapt to this second scenario.

7.1 Uniform domain space

In this scenario, a modelling m is defined in order to tackle a combinatorial problem
P from a well identified domain space. A solver is then used to solve domain in-
stances. Generic heuristics can be used to improve efficiency but specific knowledge
from the domain space could allow specialized heuristics and algorithms to be used.
The complete modelling process is presented in Figure 9.

Solver

dedicated

heuristics

algorithms
SearchP m

domain space

algorithms
search

Dedicated

heuristics

Figure 9: The modelling process

In a real-world scenario, problem instances generated by the modelling m succes-
sively appear and have to be processed by the solver. We visualize this in Figure 10
where a solver is successively used to solve incoming instances from the same mod-
elling m.

In this setting, previous learning approaches [LL98, Sil00, LBNS02, NLBD+04,
GHBF05] can succeed. Indeed their extensive offline learning phase can be imple-
mented by learning from a large set of domain instances. Since the domain space
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Figure 10: Uniform domain space: operational scenario

is uniform, knowledge learned from previous instances generalizes to the future and
good performance prediction can be achieved.

7.2 Multiple domain spaces

In many scenarios, the solver will receive instances from different domain spaces or
from different problem modellings (see Figure 11). The characteristics of problem
instances modelled by m can differ significantly from those modelled by m′.

t

Solver

Solution

Solver

Solution

Solver

Solution

m m’

Figure 11: Multi domain spaces: operational scenario

In practice, a solver can thus receive a mix of instances from a variety of different
domains. This can happen for many reasons:

• The solver is used as a “General Problem Solver” and domains are not known
in advance16. We cannot assume a specific offline learning phase for each
domain. Indeed, even if the domains were a priori known, this learning would
be very expensive.

If the domain is assumed to be fixed (e.g., planning), we still cannot assume
that all instances come from the same application. Such a fixed domain with
different instantiations is presented as the target application in [SM05]. In this
work, the domain space is planning and instances are clustered in applications
as different as web-service composition, autonomous computing, sensor net-
works, etc. In such a scenario, previous approaches will have to learn from a
large instance set covering all three target applications.

16This is usual when the solver benefits from a large set of resources (Grid, clusters) and is
addressed by many departments of the same company (marketing, financial services, production
planning, etc).
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• Even with one domain space and one final application, we cannot assume a
single fixed problem modelling. Indeed, constraints could be added/removed
over time in relation with changes occurring in the initial problem. When the
modelling changes, we cannot assume that the knowledge learned in an initial
learning phase will generalize to the new modelling even if the modifications
to the modelling are slow and incremental. The work presented in [BFP+05]
presents a CP system which extracts its parameters from a rule engine. This
allows a quick adaptation of the modelling to the environmental requirements,
but an offline learning approach would clearly be infeasible in such a system.

• Last but not least, even if the problem is fixed, the capacity of programmers
is not. Indeed, end-user’s modelling expertise usually grows over time. As a
result, initial modelling decisions are revised and new modellings are used. As
in the previous case, results from an initial offline learning phase will quickly
become outdated in this scenario.

As we can see, previous work based on extensive offline learning can hardly match
the changing settings of real world applications. Our claim is that our proposed
approach will be able to perform well in the outlined real operational settings.

7.3 Offline versus on-the-fly problem solving

What distinguishes offline from on-the-fly problem solving is just time granularity.
Indeed, classical batch applications which are using a solver on a daily basis, such
as, for example, production scheduling, are perceived as offline. At the same time,
applications which make very close calls to a search component, such as bandwidth
reservation in ATM networks, are often classified as on-the-fly. What really distin-
guishes the two concepts is the fact that in on-the-fly settings, a subsequent call is
sometimes a refinement of the question embedded in some previous query. However,
even with that in mind the frontier between offline and on-the-fly is hard to catch.

Previous batch learning approaches can be applied to both offline and on-the-fly
settings, with (batch) learning repeated for example every night. However, this
may quickly become infeasible when the training set grows too large, such that
the complete batch learning would no longer finish in one night. Furthermore, this
approach does not enable the system to use the most recent information (e.g., how
it solved a very similar instance five minutes ago). These arguments clearly call
for an incremental learning approach that starts with little knowledge and acquires
additional knowledge from every instance it solves. We depict this for the uniform
domain case in Figure 12, and for the multi domain case in Figure 13.

In the multiple domain case, when an instance comes from a new modelling
or a new domain, performance and runtime predictions cannot be expected to be
good. However, after a few instances of the new type have been seen, the system
could slowly learn enough about the new domain to make increasingly accurate
predictions. Practical systems would benefit from the opportunity to detect such as
domain change. It could, for example, be detected if the solver makes probabilistic
runtime predictions and all of a sudden the predictive uncertainty grows rapidly.
In Section 9, we will show that predictive uncertainty is indeed much higher for
instances that are very different from the so-far seen training instances when we
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Figure 13: Multi domain spaces: operational resolution and learning scenario

use Bayesian prediction methodology. We introduce the technical details of the
methodology we use in the next section.

8 On-the-fly learning and estimates of uncertainty

In this section, we introduce sequential Bayesian learning techniques which can deal
with incremental data, and which also allow for a quantization of the uncertainty in
the predictions we make. This approach clearly widens the applicability of runtime
prediction, and in particular enables us to tackle the challenges arising in the real-
world scenarios described in Section 7. We first outline the general methodology of
sequential Bayesian learning and subsequently apply it to Bayesian linear regression
for runtime prediction.

Generally speaking, say, we want to reason about some arbitrary quantity X in
an incremental setting. In this setting, we have some prior information on X which
gets refined as we acquire more and more information about X. Being Bayesian,
we view X as a random variable. The prior information on X then takes the form
of a prior probability distribution P (X), and we want to update this prior in the
light of some observed data y1:N = [y1, . . . , yN ]T . We will assume that y1:N are N
independent identically distributed (i.i.d.) realizations of the random variable Y ,
and we will also assume that we know the conditional distribution P (Yn = yn|X)
of a single data point yn given X. This term is also referred to as the likelihood
of the data point. After seeing the first data point y1, we can easily compute our
posterior belief P (X|Y1 = y1) in X as follows. Using Bayes’ law and the fact that
P (Y1 = y1) is just a constant, this can be written as the product of the prior and
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the likelihood:

P (X|Y1 = y1) =
P (X)P (Y1 = y1|X)

P (Y1 = y1)
∝ P (X)P (Y1 = y1|X).

An equivalent observation holds for the second data point, now using the poste-
rior distribution after the first data point as the prior for the second data point:

P (X|Y1:2 = y1:2) ∝ P (X|Y1 = y1)P (Y2 = y2|X) = P (X)

2
∏

n=1

P (Yn = yn|X).

Sequentially carrying out this “updating” step for each data point yn in turn
yields the expression

P (X|Y1:N = y1:N ) ∝ P (X)
N
∏

n=1

P (Yn = yn|X),

which is exactly the same expression one big batch update of X with all the data
Y1:N = y1:N would yield. Thus, sequential Bayesian updating does not loose any
information due to its incrementality. It becomes both very powerful and elegant
when the prior probability distribution and the likelihood function take on similar
forms, such that the posterior (prior times likelihood) has the same functional form
as the prior.17 If this functional form has a compact representation with some
free parameters, then Bayesian updating comes down to simply updating these
parameters with every data point.18

Now, let us apply sequential Bayesian updating to the case of linear regression
for runtime prediction. In order to keep the notation uncluttered, we only cover the
case of predicting the runtime of a single algorithm with fixed parameters – however,
the approach generalizes in a straight-forward fashion to multiple algorithms and/or
multiple parameter settings.

In section 3, we learned a linear function that predicted a single runtime r̂n =
wT φ(xn) for each problem instance sn. In contrast, we will now predict a proba-
bility density P (rn|xn,w) for the runtime.

As in linear and ridge regression, Bayesian linear regression adapts the parame-
ters w of a linear function. Linear and ridge regression found the best point estimate
of the parameter vector w. In contrast, Bayesian linear regression employs a prob-
ability distribution for w. We employ a Gaussian prior P (w) = N (w;µ0,Σ0) and
update this prior in the light of sequentially arriving data. For example, our first
data point consists of the pair 〈φ(x1), r1〉 of basis functions φ(x1) and runtime r1.
Assuming that our observation noise is Gaussian distributed with zero mean and
variance σ2

obs, this yields a likelihood function for parameter vector w:

lik(w;x1, r1) = P (r1|x1,w) = N (r1;w
T φ(x1), σ

2
obs).

Since the product of two Gaussians is still a Gaussian, the posterior distribution
P (w|x1, r1) of the parameters w will also be a Gaussian N (µ1,Σ1). Further, since
a multivariate Gaussian N (µ,Σ) is completely specified by its mean vector µ and

17In this case, the prior is said to be conjugate for the likelihood function.
18This happens, e.g., for members of the popular exponential family of distributions.
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covariance matrix Σ, we only need to sequentially update these quantities. The
necessary update equations to get the Gaussian parameter distribution N (µN ,ΣN )
after having seen N data points are as follows (see, e.g., [Bis06] for a derivation):

µN = ΣNΣ−1
0 µ0 + σ−2

obsΣNΦT r, (5)

Σ−1
N = Σ−1

0 + σ−2
obsΦ

T Φ. (6)

For (D + 1)-dimensional data, the complexity of a single update with K data
points is dominated by inverting the (D + 1)-dimensional matrix Σ0 (complexity
O(D3)), and the product ΦT Φ (complexity O(D2K)). If every data point is added
on its own, N matrix inversions yield a total computational complexity of O(ND3)
which can be reduced to O(ND2) by using a Kalman filter to update the weight
vector, thus only requiring a matrix-vector mutliplication with complexity O(D2)
per step (see the chapter on Kalman filtering and smoothing in [Jor06] for details).
Thus, the asymptotic complexity of sequential and batch learning is identical.

For a zero mean Gaussian prior N (w;0,Σ0) on the parameters w, it is easily
shown that the posterior mean is µN = (σ2

obsΣ
−1
0 + ΦT Φ)−1ΦT r. An uninfor-

mative prior would have infinite variance such that Σ−1
0 = 0 which leads to a

posterior mean µN = (ΦT Φ)−1ΦT r that exactly matches the normal equations
from the least squares solution in Equation (2). A slightly more informed prior
with Σ0 = αI (where I is the (D + 1)-dimensional identity matrix) would lead to
µN = ((σ2

obs/α)I+ΦT Φ)−1ΦT r which matches the solution for ridge regression from
Equation (4) with λ = σ2

obs/α. We have thus shown that Bayesian linear regression
with a prior with zero mean and diagonal variance yields a Gaussian distribution
over the parameters w that is centered on the ridge solution wridge.

While a probability distribution on the parameters w can be very useful, we
are ultimately interested in a probability distribution for our runtime predictions.
In the non-Bayesian case, where we had a point estimate for the parameters w, a
runtime prediction was computed by evaluating rN+1 = wT φ(xN+1). The Bayesian
alternative is to integrate out the parameters, yielding a probability distribution over
runtime (we drop the index N + 1 for simplicity):

P (r|x) =

∫

P (r|wN ,x)P (wN )dwN , (7)

where wN denotes the posterior parameters after having seen N data cases. P (wN )
is just the posterior parameter distribution N (µN ,ΣN ), with µN and ΣN defined
by Equations (5) and (6), respectively. Assuming Gaussian observation noise with
variance σ2

obs, the runtime prediction P (r|w,x) for a fixed parameter w equals
N (wT φ(x), σ2

obs). Since the convolution of two Gaussians is again a Gaussian,
Equation (7) is solvable in closed form and yields the predictive distribution

P (r|x) = N (µT
Nφ(x), σ2

obs + φ(x)T ΣNφ(x)), (8)

We showed above that in the case of a Gaussian prior with zero mean µ0 = 0

and diagonal covariance matrix Σ0 = αI, µN is just the solution of ridge regression.
Thus, the mean of the predictive distribution P (r|x) is just the runtime prediction
obtained by ridge regression, whereas the covariance depends both on the observa-
tion noise σ2

obs and the strength α of the prior. Just like for the ridge regularizer λ in
the non-Bayesian case, the performance of Bayesian linear regression depends quite
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strongly on the strength of the prior which requires a careful setting, for example
by cross validation.

The Bayesian treatment provides an alternative solution to the problem of set-
ting α which we sketch here (we did not implement this and it is not of importance
for understanding the current report, but it is important for our future work). The
standard Bayesian solution (see, e.g., [Bis06]) is to maximize the marginal likelihood
of the data

P (r|α, σ2
obs) =

∫

P (r|wN , σ2
obs)P (wN |α)dwN

with respect to α and σ2
obs. This procedure is known as empirical Bayes, type

2 maximum likelihood, or the evidence framework. Even though it finds a point
estimate of (hyper)parameters, this approach is not very prone to overfitting since
it marginalizes over the first level of parameters w. (Remember that this first level of
parameters is maximized in maximum likelihood and also in the non-Bayesian case.)
Type 2 maximum likelihood thus lifts the maximization one level higher, achieving
a much more stable solution that does not require cross validation anymore. We
will implement type 2 maximum likelihood in future work.

Finally, a truly Bayesian treatment would put (uninformative) hyperpriors on
both hyperparameters α and σ2

obs and then integrate them out to yield a Student-t
distribution P (wN ) for the posterior parameters. Unfortunately, Equation (7) is
then not solvable in closed form anymore. Although approximations can be em-
ployed, type 2 maximum likelihood seems to yield better results in practice [Bis06].

In summary of this section, note that Bayesian linear regression (when using a
prior with mean zero and diagonal covariance matrix) leads to a predictive distri-
bution for runtime that is centered on the runtime prediction of ridge regression,
but also provides an estimate of the uncertainty for this prediction.

8.1 Bayesian linear regression: a demonstration

In the previous Section, we showed that in contrast to least squares or ridge regres-
sion, Bayesian linear regression not only yields predictions of runtime, but also its
uncertainty in these predictions. In this section, we show in a toy example that
these estimates of uncertainty can be very informative.

For visualization purposes, data in this toy example only has a single feature
x. We thus want to learn a function f : ℜ → ℜ. For this function, we have six
training examples that are depicted by the crosses in Figure 14. The true function
is f(x) = x4 and the training data is corrupted by white Gaussian noise N (0, 1).
We only employ the basis functions φ(x)T = [1 x x2], such that our predictive mean
µT φ(x) = µ0 + µ1x + µ2x

2 will be a two-dimensional polynom in x. Obviously, by
including higher order terms, we could fit the function perfectly (given enough data
points), but in this example, we want to have an error in order to demonstrate our
estimates of uncertainty. This also mimics a practical situation in which we can’t
assume that the true function is included in our hypothesis class).

Note in Figure 14 that the predictive mean is fairly accurate in regions where
we have training data. This is to be expected since we have a lot of information
about the function in thoses areas. The further we move away from the data the
less information we have, especially on the two boundaries, where we have no more
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Figure 14: Demonstration of predictive distribution (predicted mean and standard
deviation) in Bayesian linear regression for a toy example. Since the predictive
distribution is a Gaussian (see Formula 8), this completely specifies the predictive
distribution. Note that the variance in the regions with training data points is very
small but grows the further away one gets from the training data.

data up to minus/plus infinity. Now note that the predictive variance captures this
information very well. In regions with data the predictive variance is very small, but
it grows larger far away from the data. Thus, even though we cannot do better in the
regions where we have no data, at least we know that we cannot trust our prediction.
This has obvious implications for practical scenarios. One very simplistic use would
be to use the prediction when the predictive variance is low and to discard it when
the variance is too high. We can also imagine straightforward combinations with
other methods, such as simple heuristics.

Furthermore, predictive variance can be used to decide where to pick the next
training data point. In Figure 14, a data point near x = 1 would be very informative
and reduce the variance for a large region, whereas another data point around x = 0
would not carry a lot of information. The question of data selection relates to the
field of active learning, an active research area methods of which we plan to use in
this domain in the future.

9 Bayesian linear regression in practice

The theoretical treatment in the last section tells us that Bayesian linear regression
will lead to the exact same mean prediction as ridge regression. On top of this,
Bayesian linear regression also yields uncertainty estimates. In this section, we
show that a similar effect as in our demonstration of Bayesian linear regression
in Section 8.1 also occurs for real data. Regions in space for which there exist
no training data will be associated with high predictive uncertainty. Further, we
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(a) Uncertainty of predictions when trained on
BIGMIX and tested on SAT04-random
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(b) Uncertainty vs. absolute prediction er-
ror when trained on BIGMIX and tested on
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Figure 15: Predictions and their uncertainty when trained on BIGMIX and tested
on SAT04-random. We only use the SAPS default parameter setting and medians
of 1000 runs for BIGMIXand of 100 runs for SAT04-random. For the uncertainty
estimates, note that we assumed σ2

obs = 1, such that the minimal predictive variance
is 1 and that values close to this are taken on for the points with small absolute
prediction error.

perform a first experiment to study the performance of Bayesian linear regression
when incrementally trained on instances from different domains.

9.1 Uncertainty estimates for real data

In Section 6.3, we have already seen experimental evidence that predictive accuracy
is very low when test and training set do not come from the same distribution.
Here, we study whether we can at least hope to identify instances for which our
predictions will be erroneous.

First, we study predictive performance when trained on data set BIGMIX and
tested on data set SAT04-random. For both data sets, we use the default parameter
setting only, but the methodology is equally applicable in the case of multiple pa-
rameter settings. For BIGMIX, we use the median of 1000 runs, for SAT04-random

of 100 runs. As before, we use the approach sketched in Section 3.2 in order to
select up to 40 linear basis functions. For feature selection, the training set is split
into training and validation set, but afterwards, the complete training set is used to
learn a predictor. For Bayesian linear regression, we assume constant measurement
noise of σ2

obs = 1 and a zero mean prior with covariance Σ0 = αI with α = 10. This
corresponds to ridge regression with λ = 10−1 and showed robust performance in
all our experiments. In practice, however, one would obviously like to estimate both
α and σobs from the data, and we plan to implement this in future work.

Figure 15(a) presents the result of training on data set BIGMIX and testing on
SAT04-random. Like in Figure 7, predictive performance is very weak, because train-
ing and test instances come from different distributions. Bayesian linear regression
solves this problem in part by at least associating higher predictive uncertainty to
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(b) Zoomed in version of (a)

Figure 16: Predictions and their uncertainty when trained on SAT04-randomand
tested on BIGMIX. We only use the SAPS default parameter setting and medians of
1000 runs for BIGMIXand of 100 runs for SAT04-random. The figure on the right is
the same as the one on the left, but zoomed to the bulk of data points.

the instances it shows very poor performance on. Note that since we assume mea-
surement noise σ2

obs = 1, the predictive uncertainty can never fall below one. Figure
15(b) shows that it is indeed very close to one for all instances with reasonable
prediction and grows with prediction error.

In Figure 16, we study how Bayesian linear regression deals with a scenario in
which a fairly uniform distribution is used for training and a more diverse distribu-
tion is used as test set. In particular, we used SAT04-random for training and tested
on BIGMIX. Intuitively, we expect good predictive performance and small uncertainty
for those instances in BIGMIX that are similar to the instances in SAT04-random, and
poor accuracy with high uncertainty for other instances. We are very pleased to
perfectly observe this pattern in Figure 16.

9.2 Incremental learning for multiple domains

In this section, we study the predictive performance of Bayesian linear regression
when incrementally trained with instances from different distributions. In partic-
ular, we incrementally feed in 200 data points, alternating between the data sets
UF100 and SAT04-random. As test set, we use both hold out test sets from UF100

and SAT04-random. We compute root mean squared error (RMSE) of the learned
regression function after every data point on each of these test sets and compare
it to the RMSE obtained when only training on the available data points from the
respective distribution. Figure 17 shows the result of this experiment. Here, we
observe that the quality of all models incrementally improves with the amount of
training data. For the models learned only on data from a single domain, this re-
lates to the real-world operational scenario depicted in Figure 12, for the case of
learning from multiple domains to the scenario in Figure 13. Training on a mix of
UF100 and SAT04-random leads to somewhat weaker performance for UF100 than
only training on UF100, but in the case of SAT04-random we see an improvement
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Figure 17: Performance when incrementally training on instance distributions
SAT04-random and UF100 at the same time. The test set performance for
SAT04-random is slightly better than when only training on SAT04-random, whereas
the performance for UF100 gets somewhat worse. Note that this data is fairly noisy
since this experiment only reflects one single split into training and test set and one
particular ordering of the data points.

due to the additional training data. However, we expect this experiment to be quite
noisy and plan to study the same effect with more data in future work. For now, we
merely note that predictive performance was not affected much by partly training
on instances from another distribution.

This has implications for practical applications since it suggests that our ap-
proach can be used in a scenario where a solver is continuously presented with
instances from different domains. However, we expect that a hierarchical Bayesian
approach [TJBB04, Jor06] can exploit similarities between different domains even
better, and we plan to study this in future work.

Another possible approach for learning in scenarios with domain changes would
be to control the strength of the posterior weight distributionN (µN ,ΣN ) to prevent
the learner from becoming too confident over time. This is because the standard
scenario with some (possibly unknown but) constant distribution over domains is
a static model, and in Bayesian linear regression for static models the variance
decreases monotonically with more data. Domain changes, on the other hand,
call for a dynamic model, in which the variance can grow due to the dynamics of
the system. One straight-forward implementation of such a dynamic model would
simply multiply the variance ΣN by a factor larger than one when a domain change
is detected.

In this section, we have seen that Bayesian linear regression can be used bene-
ficially in real-world scenarios. In particular, it can deal with incremental learning
in uniform and multiple domains (cf. Figures 12 and 13) and provides predictive
uncertainties which can be used to detect domain or modelling changes.
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10 Conclusion and Future Work

This report extends research in the area of runtime prediction for algorithms in
several directions. We reviewed previous work in the field by Leyton-Brown et
al. [LBNS02, NLBD+04] and showed that it can be used to predict the median run-
time of the stochastic local search algorithm SAPS, the predictive accuracy being
comparable to previous results for tree search algorithms. We demonstrated how
different parameter configurations can be taken into account in runtime prediction
and that this can be used for automatically tuning the parameters of an algorithm
on a per-instance base. We showed experimental results confirming that an au-
tomatically tuned version of SAPS outperforms SAPS with its default parameter
setting by a factor of more than two on the random instances from the SAT04 com-
petition (in which SAPS placed second behind a Novelty+ variant). We also showed
that in some cases the automatically tuned version of SAPS is faster than SAPS
with its best fixed parameter setting.

Our framework for automatically tuning algorithms on a per-instance base ap-
plies to many algorithms and many domains. Its requirements for an algorithm are
currently that all the parameters to tune be continuous or ordinal (but not cate-
gorical with more than two values), a requirement we would like to drop in future
work by using Gaussian processes [Wil97, Mac98, See04, Ras, RW06]. All that our
framework requires to be applicable to a domain of interest is the existence of a set
of computationally inexpensive features that are predictive of instance hardness.
This set of features can be engineered once and for all by a domain expert, aided by
automatic feature selection techniques that combine features and choose the most
useful ones. The development of new methods for automatically constructing and
detecting useful features is very important, but we see this research area as largely
orthogonal to our own work.

We hope to further improve predictive accuracy in the future, which will im-
mediately lead to improved performance of algorithms with automatically chosen
parameter configurations. We also wish to fully exploit the capabilities of our cur-
rent approach by employing a search in continuous search space for the parameter
configuration that is predicted to be fastest. So far, our experiments are limited to a
rather toy experiment with 16 possible parameter configurations – this unnecessary
discretization is not a limitation of our approach but of our experiments, and we
would like to remove this shortcoming in future work.

Another contribution of this report is the introduction of Bayesian regression
methods to the field of runtime prediction. We demonstrated that the predictive
uncertainty Bayesian approaches yield can be very informative in practical applica-
tions, such as learning and prediction in a scenario with multiple domains. When
learning from one domain and testing on another domain, any supervised Machine
learning approach will show poor performance since all statistical guarantees are
lost. However, we demonstrated that our Bayesian approach – while also suffer-
ing from poor predictive performance – can at least quantify the uncertainty of its
predictions. In short, when launched on a new instance that is very different from
all training instances, the Bayesian approach will know that it will not perform
well. For the problem of learning in multiple domains, we expect that hierarchical
Bayesian models [TJBB04, Jor06] can better exploit similarities between domains
and shield off adversary effects from highly dissimilar domains. We plan to study
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this in future work.
We deliberately kept our machine learning approach simple to start with. As

a first step, we used Bayesian linear regression, but we intend to move on to more
powerful approaches, such as Gaussian processes, in the near future. Gaussian
processes usually take cubic time in the number of training points [RW06], but
there exist efficient approximations, such as assumed density filters using a fixed set
of basis functions [ZR95], online sparse Gaussian processes [CO02], and Gaussian
processes using pseudo-inputs [SG06]. Fast methods, such as KD trees can also be
applied to the problem [SNS06].

Runtime prediction for algorithms with various parameter configurations lends
itself nicely to active learning [SWWW89, SN96, Mac92, CGJ96]. We plan to apply
methods from this field to choose the most informative parameters for each instance
to train on. In an incremental setting, we would like to study the tradeoff of
exploitation (choosing a parameter configuration that will solve a new instance
quickly) and exploration (choosing other parameter configurations from which we
learn more about poorly known parameter regimes). There has already been some
work on trading off exploration and exploitation in a regression setting [Thr95].
[CS05] showed how this problem should be addressed in an optimization framework.

Finally, we are also interested in algorithms that can adapt their parameters
during the search. From our point of view, the most promising and most princi-
pled line of research for this is based on reinforcement learning. However, general
reinforcement learning strategies, such as described in [SB98] and applied to search
algorithms in [LL01], need a compact state representation. It should be studied
whether supervised or even completely unsupervised machine learning algorithms
could automatically learn to distinguish a small number of states to be used in the
standard reinforcement learning framework.
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