Menu

PhD Student

Jake Robertson

Postal address
Institut für Informatik
Albert-Ludwigs-Universität Freiburg
Sekretariat Hutter/Maschinelles Lernen
Georges-Köhler-Allee 074
79110 Freiburg, Germany
Office
Building 74, Room 00-014

 

 

 

 

Publications

2025

Robertson, Jake; Reuter, Arik; Guo, Siyuan; Hollmann, Noah; Hutter, Frank; Schölkopf, Bernhard

Do-PFN: In-Context Learning for Causal Effect Estimation Inproceedings Forthcoming

In: 39th Conference on Neural Information Processing Systems (NeurIPS), Forthcoming, (Spotlight).

Grinsztajn, Leo; Flöge, Klemens; Key, Oscar; Hayler, Adrian; Manium, Mihir; Garg, Anurag; Robertson, Jake; Hoo, Shi Bin; Birkel, Felix; Jund, Philipp; Jäger, Benjamin; Yu, Rosen Ting-Ying; Schölkopf, Bernhard; Hollmann, Noah; Hutter, Frank

TabPFN-2.5: a Preview Inproceedings Forthcoming

In: EurIPS 2025 Workshop: AI for Tabular Data, Forthcoming.

Swelam, Omar; Purucker, Lennart; Robertson, Jake; Raum, Hanne; Boedecker, Joschka; Hutter, Frank

Does TabPFN Understand Causal Structures? Inproceedings Forthcoming

In: EurIPS 2025 Workshop: AI for Tabular Data, Forthcoming.

Robertson, Jake; Reuter, Arik; Guo, Siyuan; Hollmann, Noah; Hutter, Frank; Schölkopf, Bernhard

Do-PFN: In-Context Learning for Causal Effect Estimation Inproceedings

In: Foundation Models for Structured Data workshop at ICML, 2025.

Robertson, Jake; Hollmann, Noah; Müller, Samuel Gabriel; Awad, Noor; Hutter, Frank

FairPFN: A Tabular Foundation Model for Causal Fairness Inproceedings

In: Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.

2024

Robertson, Jake; Schmidt, Thorsten; Hutter, Frank; Awad, Noor

A Human-in-the-Loop Fairness-Aware Model Selection Framework for Complex Fairness Objective Landscapes Inproceedings

In: Proceedings of the Seventh AAAI/ACM Conference on AI, Ethics, and Society (AIES-24), 2024.

Robertson, Jake; Hollmann, Noah; Awad, Noor; Hutter, Frank

FairPFN: Transformers Can do Counterfactual Fairness Conference

Proceedings of the Third International Conference on Automated Machine Learning (AutoML 2024), Workshop Track, 2024.