Uni-Logo

2017

  • Bischl, Bernd and Casalicchio, Giuseppe and Feurer, Matthias and Hutter, Frank and Lang, Michel and Mantovani, Rafael G. and van Rijn, Jan N. and Vanschoren, Joaquin (pdf)(bib)
    OpenML Benchmarking Suites and the OpenML100
    In: arXiv submit/1976125 (2017): 1-6

2016

  • Mendoza, H. and Klein, A. and Feurer, M. and Springenberg, J. and Hutter, F. (pdf)(poster)(bib)
    Towards Automatically-Tuned Neural Networks
    In: ICML 2016 AutoML Workshop

2015

  • Feurer, M. and Klein, A. and Eggensperger, K. and Springenberg, J. and Blum, M. and Hutter, F. (preprint)(published)(supplementary)(poster)(bib)
    Efficient and Robust Automated Machine Learning
    In: Advances in Neural Information Processing Systems 28
  • Vanschoren, J. and van Rijn, J. and Bischl, B. and Casalicchio, G. and Lang, M. and Feurer, M. (pdf)(bib)
    OpenML: a Networked Science Platform for Machine Learning (Abstract)
    In: ICML 2015 MLOSS Workshop
  • Feurer, M. and Klein, A. and Eggensperger, K. and Springenberg, J. and Blum, M. and Hutter, F. (pdf)(poster)(slides)(bib)
    Methods for Improving Bayesian Optimization for AutoML
    In: ICML 2015 AutoML Workshop
  • Matthias Feurer and Tobias Springenberg and Frank Hutter (pdf)(supplementary)(poster)(bib)
    Initializing Bayesian Hyperparameter Optimization via Meta-Learning
    In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2014

  • Matthias Feurer and Tobias Springenberg and Frank Hutter (pdf)(slides)(bib)
    Using Meta-Learning to Initialize Bayesian Optimization of Hyperparameters
    In: ECAI workshop on Metalearning and Algorithm Selection (MetaSel)
    Superseeded by the AAAI15 paper Initializing Bayesian Hyperparameter Optimization via Meta-Learning

2013

  • Katharina Eggensperger and Matthias Feurer and Frank Hutter and James Bergstra and Jasper Snoek and Holger Hoos and Kevin Leyton-Brown (pdf)(poster)(bib)
    Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters
    In: NIPS workshop on Bayesian Optimization in Theory and Practice
    Software and benchmarks are available from our HPOlib website.