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A BayesiarOptimizationis a powerful technique for finding the global optimizeb&dckboxfunctions.
A Users want to know more: which inputs are important, the effects of which ones are correlated?
A We use functional ANOVA to provide such information, based on efficient operations in random forests.

Efficient Marginal Performance Predictions in Random Forests
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True and predicted interaction effect

Efficient Decomposition of Variance
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Functional ANOVAnot new) = Complexity with Random Forests 7eg 1y parameters

We can use our efficient marginal computations Four parameters consistently turned out to be important:

to compute these importance indices efficiently: A Machine learning algorithm (out of 31 choices)
A Base algorithm to use in an ensemble

A Feature selection: scoring mechanism for feature subsets
A Feature search: search mechanism through feature subsets

Main effect of the choice of machine learning algorithm
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o _ for MNIST
How to Use This In Practice

A Collect performance data by running

the algorithm with different parameter settings
(e.g., run Bayesian Optimization)

Fit a random forest model on that data

(can e.g., be the model already usedB@yesOpt
Determine important (pairs of) variables
Inspect important main and interaction effects
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Future work: use within Bayesian optimization
to iteratively focus on important parameters
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Application to solvers for hard combinatorial problems (SAT, MIP, TSP)

A Stateof-the-art solvers for Nfhard problems SAT, MIP, and TSP

A Between4 and 76parameters (choices of heuristics()

A Performance highlgependent orthese parameters

A Ran SMAQHutterS 0 £ X WYmMmB (USY GAYSa FT2NJ SFOK 0SYOKY!I NJ
- achivedspeedupdetween 1.02x an@57x over default
- fitted random forests on the union of the performance data
- ran functional ANOVA on the random forest

Main effects explained a large fraction of variance: see table . . . - .
(its variable selection heuristic) on instances from

hardware verification (left) and software verification (right)
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